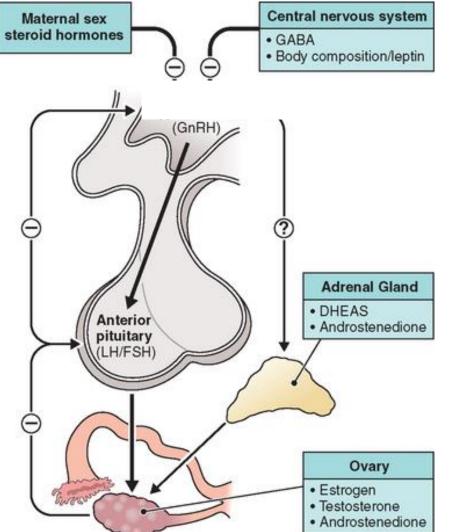
Hormone Phenotypes and the Timing of Pubertal Milestones in a Longitudinal Cohort of Girls

Cecily Shimp Fassler <u>shimpcl@ucmail.uc.edu</u> The University of Cincinnati College of Medicine Department of Environmental Health - Epidemiology

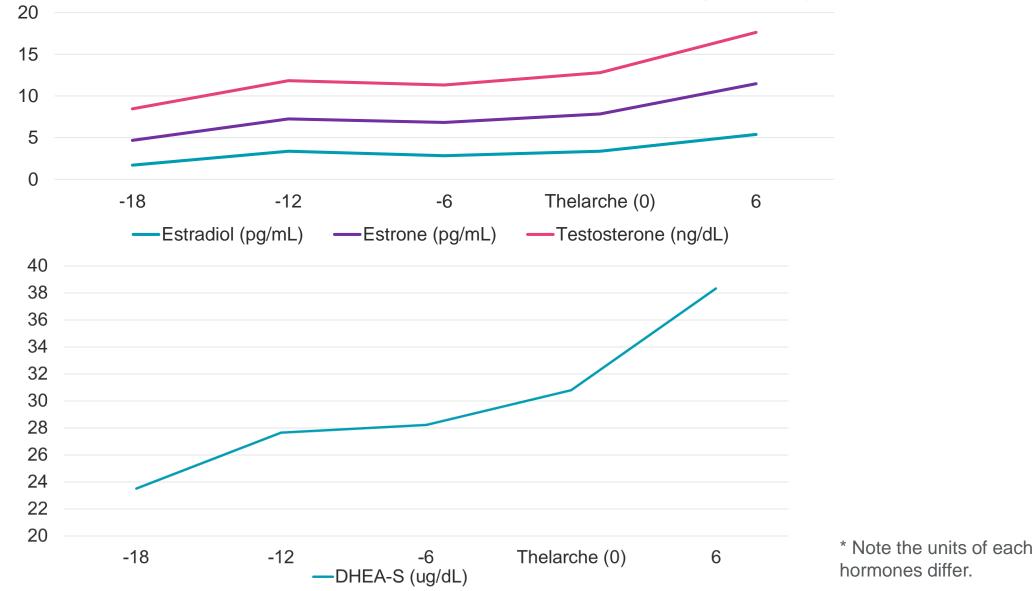
November 7, 2019


https://www.menstrupedia.com/articles/puberty/physical-changes-girls

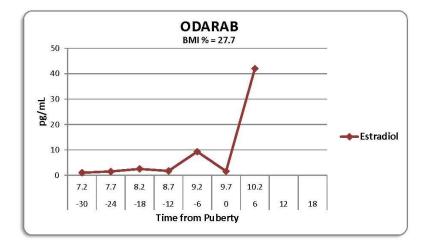
Hormones During Puberty

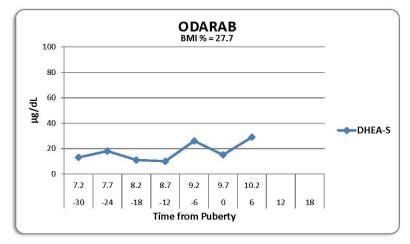
Hormone levels change throughout puberty.¹

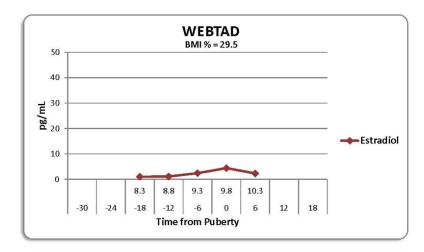
- 1. Gonadotropin-releasing hormone (GnRH) is released at the beginning of puberty.
- 2. The follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are then released into the bloodstream.
- 3. LH and FSH stimulate the ovaries to produce estrogen (estradiol, estrone, and estriol) to initiate breast development.
- 4. The adrenal gland hormones, DHEA-S (dehydroepiandrosterone sulfate) and testosterone, stimulate pubic hair growth.²
- 1 Peper JS, Dahl DE. Surging hormones: brain behavior interactions during puberty. Curr Dir Psychol Sci. 2013 April;22(2): 134-139.
- 2 Braude, P, Hamilton D. Hormone changes during puberty, pregnancy, and menopause. Obstetric and Gyneocologic Dermatology 2008;3:3-12.

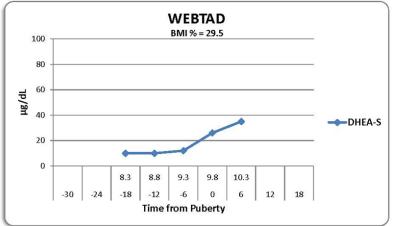

https://abdominalkey.com/normal-puberty-and-pubertal-disorders/

Hormones Attributes




Mean hormone values across time related to the larche (time=0)*




Individual Girl's Hormones

Objective

Determine if the hormone levels in girls around the time of thelarche are the same for all girls or if girls have different patterns in increases and decreases in hormone levels.

- Identify peri-pubertal hormone phenotypes (or clusters) in young girls based on hormone levels around thelarche (e.g. estradiol at -6 and 0 or testosterone and estrone at 0).
- Determine if the phenotypes are associated with differences in the ages of pubarche, thelarche and/or menarche.

Study Design – Cincinnati Cohort

BCERP's Puberty Cohort

- Three site, longitudinal, prospective cohort: East Harlem, New York; Greater Cincinnati Area; San Francisco Bay Area
- Recruited girls aged 6-8 from 2004 until 2006 (n=1,239)

Cincinnati Cohort -

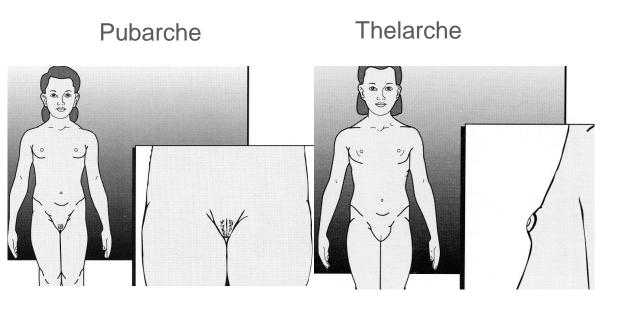
- 379 girls were enrolled in the Cincinnati cohort.
- The girls were seen every six months for study visits from 2004-2014.
 - Anthropometric measurements
 - Blood for serum collected
 - Pubarche and thelarche staging
 - Answered questions regarding menarche, exercise, nutrition, etc.
- For this analysis, girls will be excluded if they report taking oral contraceptives or have an underlying hormone condition.
- This analysis included 269 girls with hormone measurements.

Unique Longitudinal Cohort

Most cohorts studying pubertal hormones are cross sectional and based on absolute age or pubertal status rather than timing related to puberty

		Thelarche Achieved	Menarche Achieved	Age
	Girl 1	Yes	No	12
	Girl 2	Yes	Yes	10
	Girl 3	No	No	10
	Girl 4	No	No	9 V

<u>Cross sectional</u> - looks at hormones of the girls who achieved thelarche vs those who did not or looks at hormones of 12 year olds versus 11 year olds versus 10 year olds regardless of pubertal status.


Longitudinal cohort - ability to determine age of the larche and link other visits to time before or after the larche .

· · · · · · · · · · · · · · · · · · ·									
Visit	1A	1B	2A	2B	3A	3B	4A	4B	
Girl 1	-12	-6 (Thelarche) +6		Menarche			
Girl 2	-18	-12	-6 (Thelarche	+6	Menarche			
Girl 3		-18	-12	-6	Thelarche)+6		Menarche	
Girl 4					-18	-12	-6(Thelarche	

There were visits beyond 4B included in this analysis. Girls who entered at -6 were not included.

Pubertal Milestone Measurements

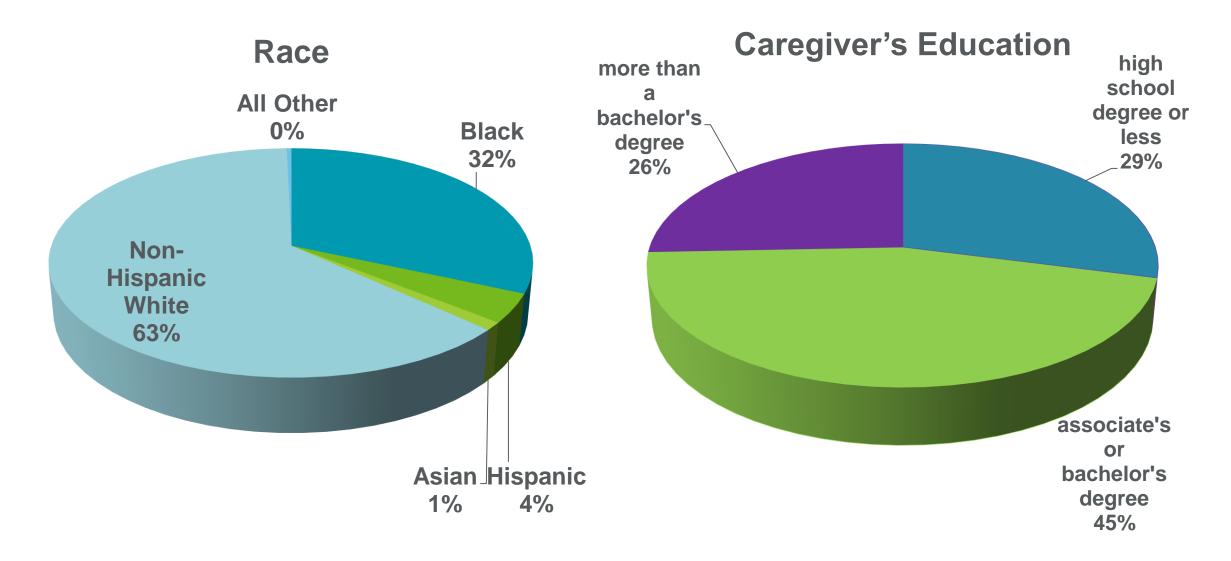
Stage 2: First appearance of hair, which is sparse, straight, or only slightly curled; long, slightly pigmented; downy; and primarily located along the labia.

Stage 2: Breast bud stage, with a small mound formed by the elevation of the breast papilla; areolar diameter enlarges.

Thelarche and Pubarche were achieved when sexual maturation stage 2 or greater was reached.

Age of Pubarche in months–Used accessory light sources to determine the presence or absence of hair in the pubic area.

Age of Thelarche in months –Staff observed and palpated to determine breast stage.


- Staff graded down if all criteria were not met for a stage.
- Girls with inconsistent breast staging were considered the lower stage until consistently the higher stage.

Age of menarche in months - Self-reported from study participant's and/or her caregiver's answers to questions regarding their first menstrual cycle.

Demographic Information (n=269 girls)

Methodology

Employ an objective and agnostic analysis using Principal Component Analysis followed by Cluster Analysis (PCA-CA) to define hormone phenotypes only looking at the hormones (estradiol, estrone, testosterone and DHEA-S at times -6, thelarche and +6) not any other variables suspected or known to influence puberty such as race or BMI.

- 1. Pearson Correlations determine if hormones at the time periods are highly correlated
- 2. Principal Component Analysis determine if variable reduction is possible given that hormones at certain time periods are redundant /highly correlated and they measure the same thing
- 3. Cluster Analysis classify girls into phenotypes/clusters based on the 12 hormone data points such that girls in one cluster are more similar to each other than girls in another cluster
- 4. Survival Analysis determine which phenotypes are associated with different ages of pubertal milestones

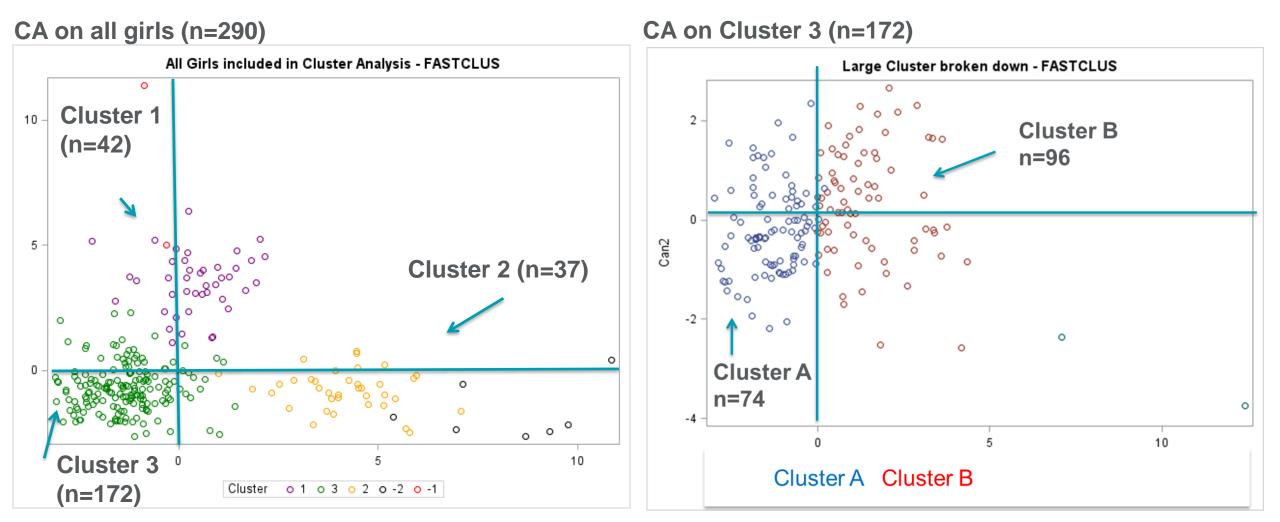
Methodology

Principal Components followed by Cluster Analysis

- PCA-CA is a validated statistical approach to identify subgroups or phenotypes. Previously patients were classified into "phenotypes" based on a few well characterized traits or thought to be homogenous.
- PCA-CA phenotypes have been well documented for cardiovascular risk, chronic obstructive pulmonary disease, asthma, and sleep apnea.
 - For each study, different sets of known disease symptoms presented in each of the disease phenotypes.

Cecily S Fassler, Iris Gutmark-Little, Changchun Xie, Courtney M Giannini, Donald W Chandler, Frank M Biro, Susan M Pinney, Sex Hormone Phenotypes in Young Girls and the Age at Pubertal Milestones, *The Journal of Clinical Endocrinology & Metabolism*, Volume 104, Issue 12, December 2019, Pages 6079–6089, <u>https://doi.org/10.1210/jc.2019-00889</u>

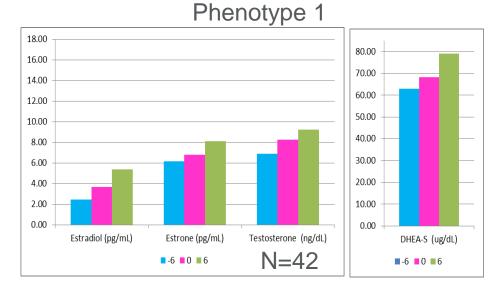
Correlations and Principal Components

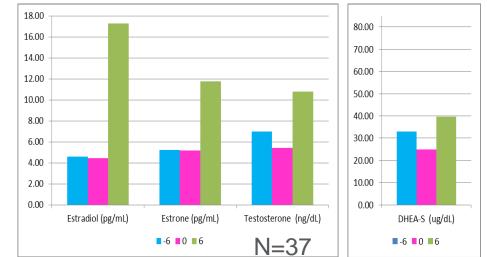


- The lack of correlation of E2 at different time periods and the high degree of correlation among the other absolute hormones supports the inclusion of them into PCA-CA.
- PCA did not result in variable reduction of the absolute hormone values.
 - Should use all four absolute hormones measurements at -6, 0 and 6 as objective predictive variables in the cluster analysis.

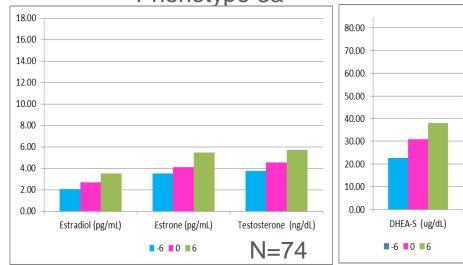
Participant Clustering using CA

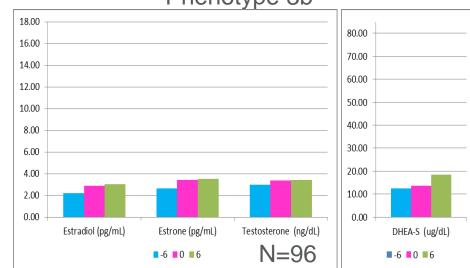
based on estradiol, estrone, DHEA-S and testosterone at times =-6,0,6




*Assigns each girl to only one cluster and identifies outliers.

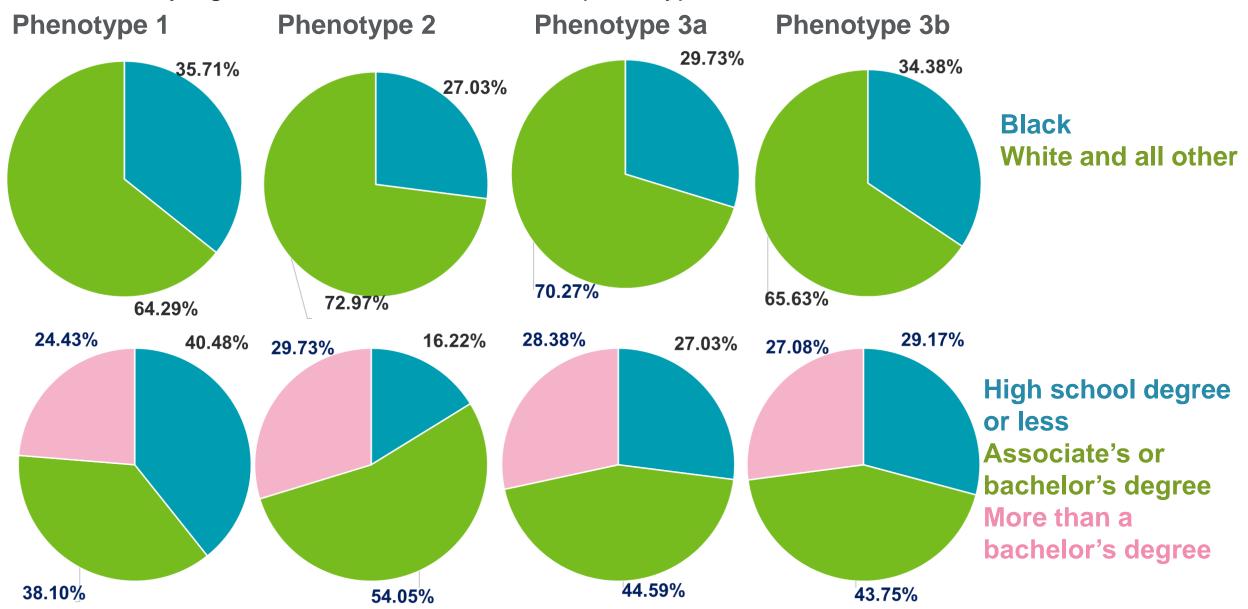
Mean Hormone Values by Phenotype* Phenotype 1 Phenotype 2





Phenotype 3a

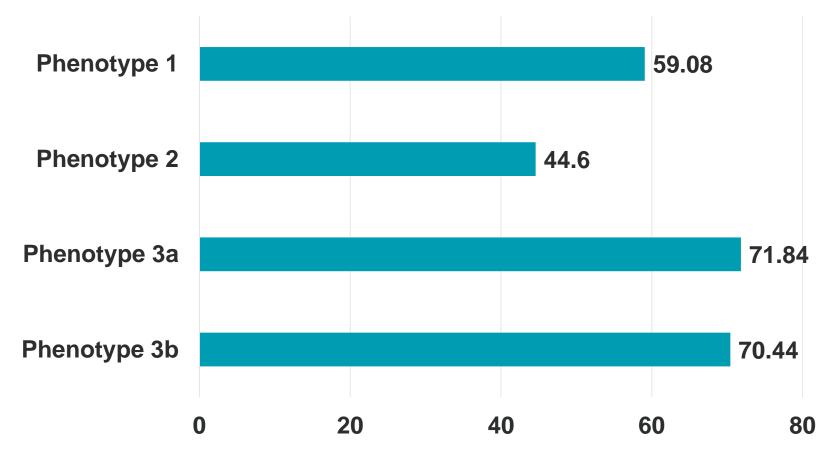
* Note the units of each hormones differ.


Cecily S Fassler, Iris Gutmark-Little, Changchun Xie, Courtney M Giannini, Donald W Chandler, Frank M Biro, Susan M Pinney, Sex Hormone Phenotypes in Young Girls and the Age at Pubertal Milestones, *The Journal of Clinical Endocrinology & Metabolism*, Volume 104, Issue 12, December 2019, Pages 6079–6089, <u>https://doi.org/10.1210/jc.2019-00889</u>

Phenotype 3b

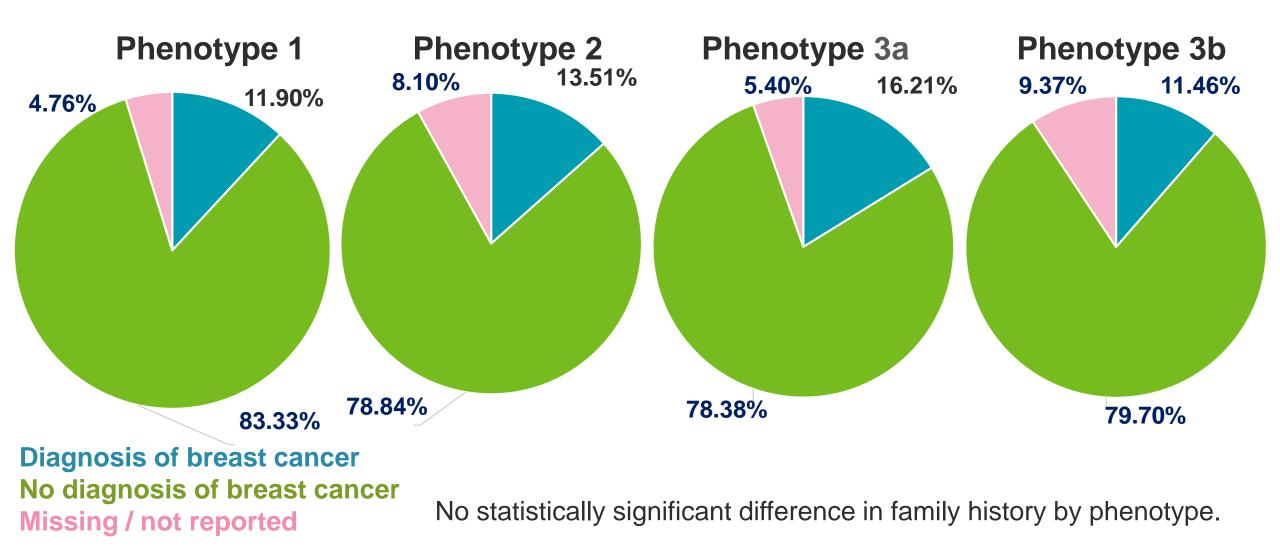
Race and parental education

No statistically significant differences across the phenotypes.



BMI Percentile

Median BMI Percentile



No statistically significant difference in BMI by phenotype but 3a and 3b have the largest BMI%.

Family History of Breast Cancer

First or Second degree maternal family member with a breast cancer diagnosis

Clustering of phenotypes

- Cluster analysis assigned each girl to a phenotype based on her estradiol, estrone, DHEA-S, and testosterone at each time period (-6,0,6).
- The hormone levels at the different time periods across the four phenotypes varied greatly indicating hormone levels relative to the timing of the larche are not the same for all girls.
- No statistical difference in other variables including BMI, race/ethnicity, parental education level and family history of cancer existed among the phenotypes which confirms phenotypes should be based on the hormones at the three time periods.

Associations With Pubertal Milestones from Survival Analysis

Earlier ages of thelarche, pubarche and menarche differed by phenotypes, confirming heterogeneity of hormone phenotypes.

- Phenotype 2 much more likely to experience menarche earlier than all other phenotypes.
- Phenotype 3a and 3b more likely to have an earlier age at the larche than 1.
- Phenotype 3a is more likely to have an earlier age of pubarche than 3b.

All analyses controlled for race, BMI nearest but before age of the pubertal milestone, and mother's age of menarche. As expected:

- Black girls were twice as likely to reach puberty earlier than other girls.
- Heavier girls were more likely to reach puberty earlier than those with a lower BMI.
- Girls with mother's ages of menarche younger than 12 years old are 50% more likely to reach all three milestones earlier than girls with mother's ages at least 14 years old.

Conclusions

- Classifying hormone heterogeneity prior to puberty is highly informative in unveiling different pathways through puberty.
- The four distinct hormone phenotypes in girls indicate hormones levels relative to the age of thelarche are not the same in all girls and help to explain disparity in the age of onset.
- These findings underscore the need to better understand female sex hormones prior to puberty based on time related to puberty rather than chronological age or pubertal status.

Acknowledgements

Dissertation Committee

Dr. Susan Pinney

Dr. Frank Biro

Dr. Iris Gutmark-Little

Dr. Changchun Xie

University of Cincinnati

Jenny Buckholz Dr. Courtney Giannini Dr. Rob Herrick Victoria Straughn

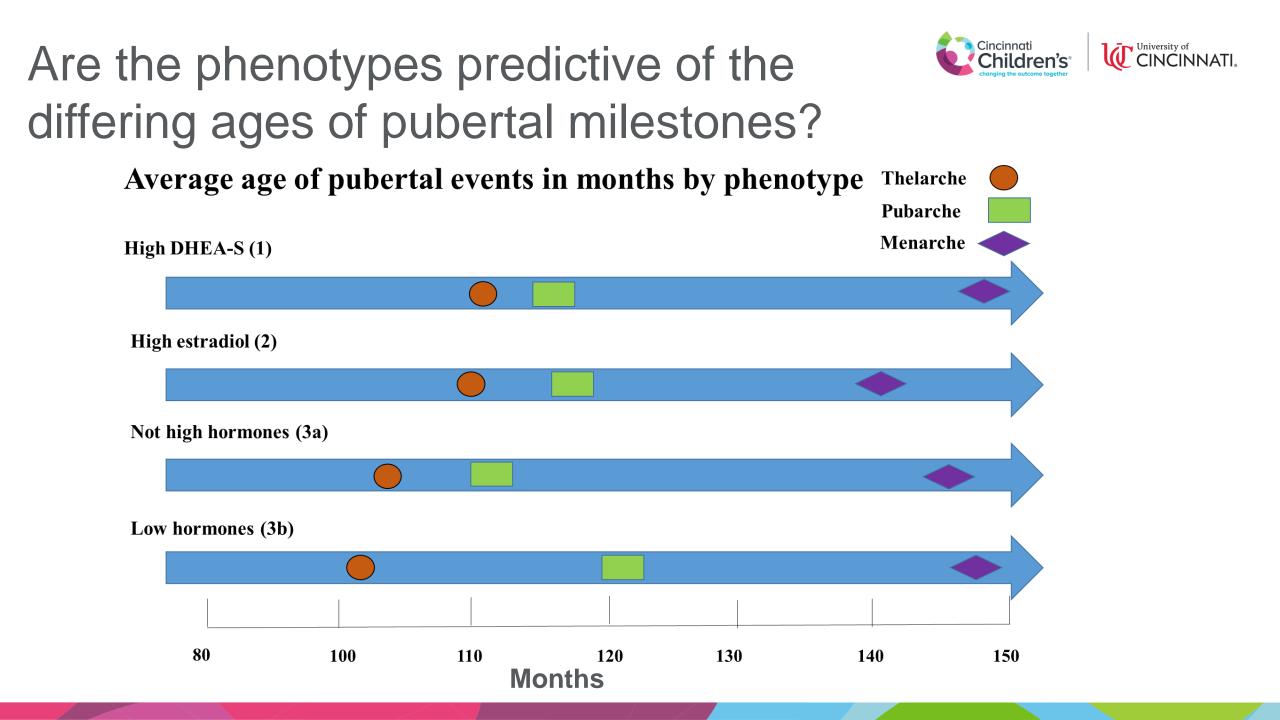
<u>i</u> <u>Michigan State University</u>

Dr. Richard Schwartz

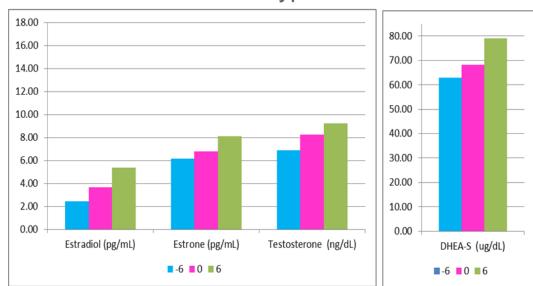
<u>Lab Corp</u> Dr. Walt Chandler

<u>CCHMC</u>

Justin Bates Dr. Bin Huang Anita Southwick Brittany Spicer


Funding

U01ES012770, U01ES019453, U01ES019457, U01ES026119, R01ES029133, T32GM063483, T32ES010957, P30 ES006096, CSTA-UL1RR026314

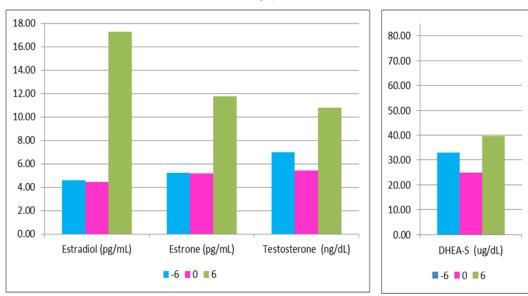


Further Characteristics of the Phenotypes after being line continues

- Statistical difference exists between the age of thelarche and the age of pubarche among the four phenotypes.
- Girls in phenotypes 1 and 3b had an average age of menarche statistically later than girls in phenotype 2.
- The tempo of girls in phenotype 2 was statistically shorter than that for girls in phenotype 3b.
- Girls in phenotype 3b were more likely to enter puberty via pubarche rather than thelarche which is different than the other phenotypes.
- No differences between the phenotypes existed for the following characteristics:
 - BMI
 - ethnicity
 - family history of 1st or 2nd degree breast cancer
 - mother's age of menarche
 - caregiver's education

Phenotype 1

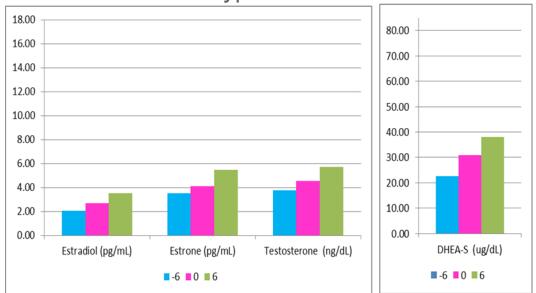
- Cincinnati Children's changing the outcome together
- Higher DHEA-S (over 100% higher than the cohort mean at each time period)
- Testosterone values over 50% higher than the cohort mean
- E1 values over 50% higher than the cohort mean
- Large increase in DHEA-S from -6 to 0 and 0 to 6
- Latest age of thelarche
- Latest age of menarche
- Less risk of early thelarche than 3a or 3b



Phenotype 1

Phenotype 2

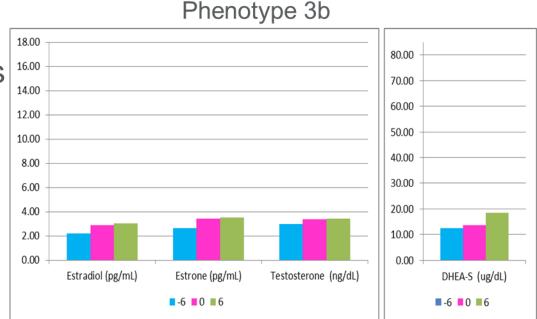
- High E2 values across the time period from 30%-200% higher than the mean of the cohort
- E1 90% higher at +6
- Testosterone >50% higher at -6 and +6
- Huge increase in E2 from 0 to 6 (300%)
- Decrease in testosterone, estrone and DHEA-S from -6 to 0, then larger increase in all hormones from 0 to 6
- Earliest to achieve menarche
- Shortest tempo
- 50% greater risk of earlier menarche than other phenotypes
- Less risk of early thelarche than 3b



Phenotype 2

Phenotype 3a

- Hormones lower than the cohort averages by about 10% except
 - 20% lower for DHEA-S at -6
 - >20% lower for all E2 time periods
- Large increase in DHEA-S from -6 to 0
- Earliest to pubarche
- More girls entering pubarche prior to thelarche than other phenotypes
- Greater risk of entering pubarche early than 3b



Phenotype 3a

Phenotype 3b

- Over 30% lower levels for all hormones
 - DHEA-S was 50% lower at all 3 time periods
 - E1 was over 40% lower at 6 and
 - E2 at -6 and 6 and E1 at 0 (over 20% lower)
- Minimal changes in the hormones
- Earliest to thelarche
- Latest to pubarche
- Second to last to enter menarche
- Longest tempo
- Fewest girls entering pubarche prior to thelarche

Limitations

Limitations

- Breast tissue is sometimes confused with fat tissue making some question validity of breast maturation staging.
 - Our study staff was trained and certified to assess breast maturation.
 - Cohen's Kappa (0.67) indicated "substantial agreement"
- As with any study there is the potential for volunteer bias.
- One site study leads to lack of generalizability to the United States.
 - The cohort has a similar racial and social economic background to the United States (US).
 - BMI% of the cohort is similar to the NHANEs data making it more generalizable to the entire US.¹

Limitations

- Accuracy of recall of age of menarche could be questioned.
 - Questionnaire data on menarche was collected yearly.
 - Recall of menarche is typically high because it is not an arbitrary event.
 - Studies have shown age of menarche recall over 63% accurate after a year or more.¹
- Lack of age of menarche for 21% of the girls who either dropped out of the study or the study ended prior to them achieving menarche.

Strengths

Strengths

- The use of HPLC-MS enabled us to evaluate hormones measurements that are typically too low to measure in young girls with earlier methods.
- Esoterix Laboratories (now LabCorp) is qualified by the CDC.¹
 - Interassay Precision (% of coefficient variation for the low, medium and high control serum samples) for initial 252 girls were all less than the standard expectation of 15%. The interassay precisions follow:
 - Estradiol \leq 4.4%, Estrone \leq 4.9%, DHEAS \leq 8.4%, Testosterone \leq 9.9%¹
 - The average bias estimations from on-going proficiency studies are less than 2%.¹

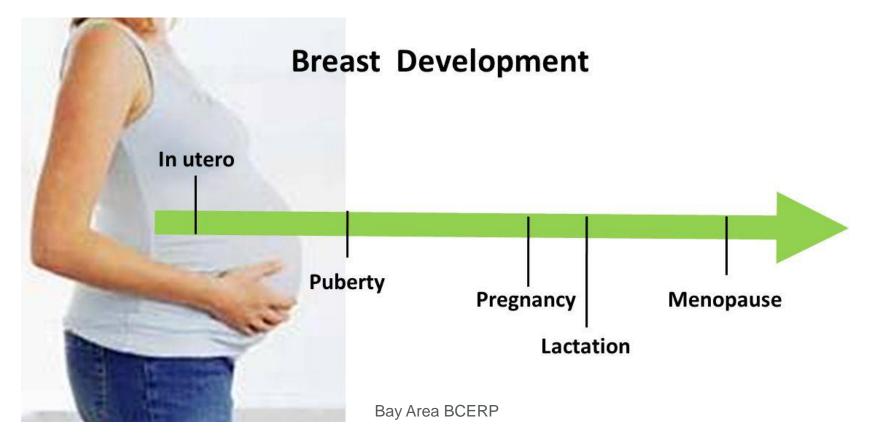
- Study staff was trained and certified to take standardized anthropometric measurements, with quality assurance procedures.
- A limited number were trained and certified to assess pubertal maturation.
 - Cohen's Kappa = 0.67 for agreement between the examiner and master trainer during 127 dual examinations across the three sites.¹

Strengths

- Longitudinal analysis
 - First study to quantify hormones in a longitudinal way relative to time to thelarche rather than based on chronological age.
 - Examining hormones based on a chronological age would have diluted the differences in hormone levels.
- Agnostic, objective, and innovative statistical analysis
 - PCA-CA has been used to identify clinical phenotypes in other medical conditions (e.g. COPD, asthma, sleep apnea).
 - Each phenotype included some but not all of the hormones supporting the heterogeneity of the phenotypes.

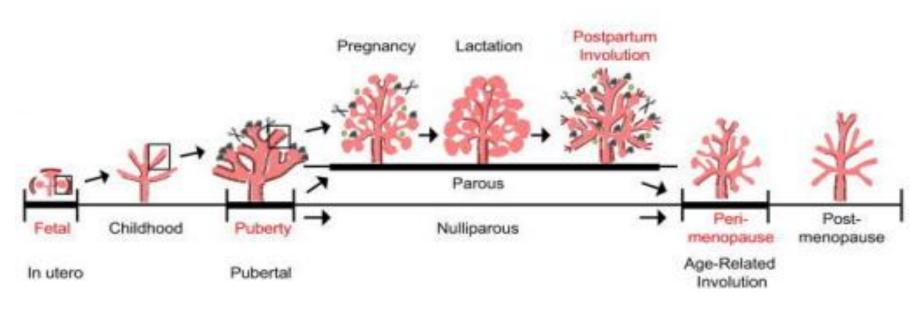
Future Directions

Future Directions



- Identification of these phenotypes and their relationships to clinical characteristics should be repeated in a larger longitudinal study to replicate these findings and extend them to a more nationally representative population. This would also enable clinical references for the phenotypes to be defined.
- Associate these phenotypes with other outcomes such as migraine headaches and breast cancer.

Windows of Susceptibility for Breast Cancer


"Windows of Susceptibility" are periods when the developing breast tissue is most susceptible to gene-environment interactions and environmental exposures that increase the risk of breast cancer

Cincinnati Children's changing the outcome together

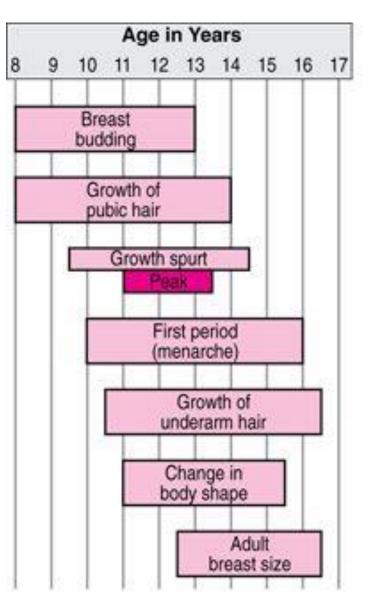
Lifecycle of the Breast

In utero – breast ducts begin to form

Puberty – breast tissue proliferation: lengthening and branching of ducts and development of lobules

Pregnancy – terminal end bud differentiation

Lactation – the milk duct system grows as more lobules form


Menopause – reduction of glandular tissue in the breast

Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. *Experimental cell research*. 2013;319(11):1671-1678

Pubertal Milestones

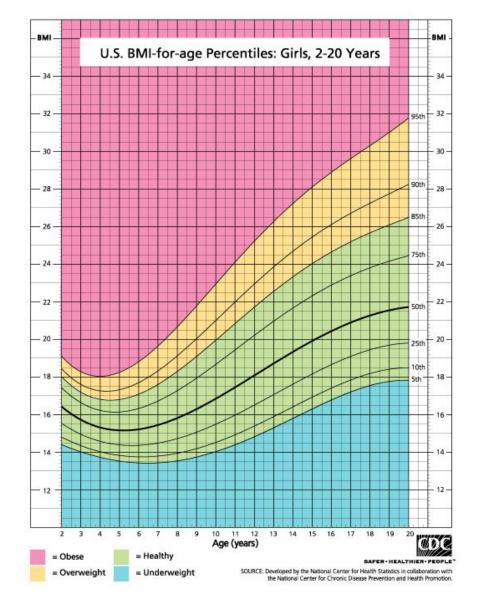
There are a number of pubertal milestones reached before the end of puberty and full sexual maturation.

https://www.merckmanuals.com/home/women-s-health-issues/biology-of-the-female-reproductive-system/puberty-in-girls

Sex Characteristics

- Primary Sex Characteristics sex organs responsible for reproduction e.g. ovaries, uterus
- Secondary Sex Characteristics physical characteristics that are not responsible for reproduction e.g. pubic hair, enlarged breasts, increase height

Objective


- The objective of this research project is to use longitudinal cohort data and quantitative research methods to identify sex hormone phenotypes around the time of thelarche. These analyses will incorporate serum concentrations of up to four hormones (DHEA-S, estradiol, estrone and testosterone) at five different time periods measured in 6 month increments from 18 months prior to 6 months after the age of thelarche.
- A second objective of the research is to determine if the ages of pubertal milestones (thelarche, pubarche, and menarche) are associated with a hormone phenotype.

Study Measurements

BMI% - calculated as weight in kilograms/ height in meters²

- Derived from the average of two measurements taken at each study visit by trained staff
- Determined using CDC growth charts from 2000

Study Measurements

BMI% vs BMIz score?

- BMIz score is the number of standard deviations away from the mean BMI for an age group. This score can be compared across age groups unlike BMI% and the measure is usually normal in distribution.
- BMI% is the percentage of people who fall below a certain value. However it is likely to not be normal in distribution.

Hormone Attributes

Table 1 - Description of hormones for the study cohort girls across the 5 time periods (-18,-12,-6,0, and 6)

Hormone	Ν	Median	Mean	Standard	Minimu	Maximum	LOD	#<	% < LOD
				Deviation	m			LOD	
DHEA-S (ug/dL)	920	22.00	30.16	26.57	7.07	211.00	10.00	170	18.48
Estradiol (pg/mL)	856	1.80	3.42	6.26	0.71	114.00	1.00	207	24.18
Estrone (pg/mL)	858	3.60	4.36	3.41	1.77	51.00	2.50	254	29.60
Testosterone (ng/dL)	859	4.10	4.89	3.59	1.77	50.00	3 or 2.5*	242	28.17

All values <LOD imputed with LOD/ $\sqrt{2}$

* Two batches were sent off to assay.

Objective

Use principal component and cluster analysis (PCA-CA) to identify, for the first time, distinct hormone phenotypes of girls in a longitudinal cohort.

- Focus on patterns in the data, that could be predictors of risk of early or late pubertal maturation.
- Use an agnostic approach to define the phenotypes by completing the statistical analysis of the sex hormone data only and then looking at other variables to describe the phenotypes.

Correlations

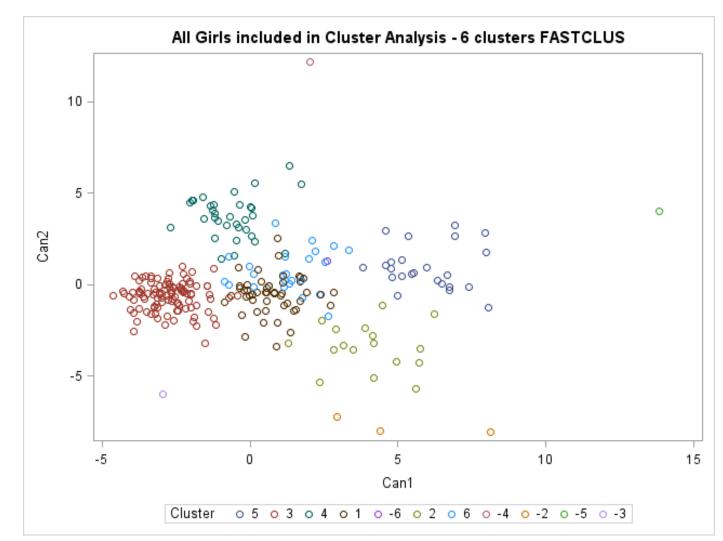
- The lack of correlation of E2 at different time periods and the high degree of correlation among the other absolute hormones supports the inclusion of them into PCA-CA.
- The overall lack of correlation between the differences in the hormone values between the time periods (e.g. the difference in testosterone values between -18 and -12) does not support inclusion of these "change" variables into PCA.

Variable Dimension Reduction PCA

Results from factor analysis will be used as a guide to determine which variables to be used in cluster analysis to determine a hormone phenotype.

- 1. PCA of absolute hormones at the time periods -6,0,6 produced fairly consistent results in the sensitivity analysis (n=260 vs 67).
- 2. PCA of the differences in hormones between the time period produced one factor including estrone, testosterone and DHEA-S differences between -6 and 0 and the differences between 0 and 6 which is consistent with the lack of correlation

... seems to make sense not to combine the two ways of looking at the hormones (absolute vs differences) and focus on the absolute values for cluster analysis


Participant Clustering

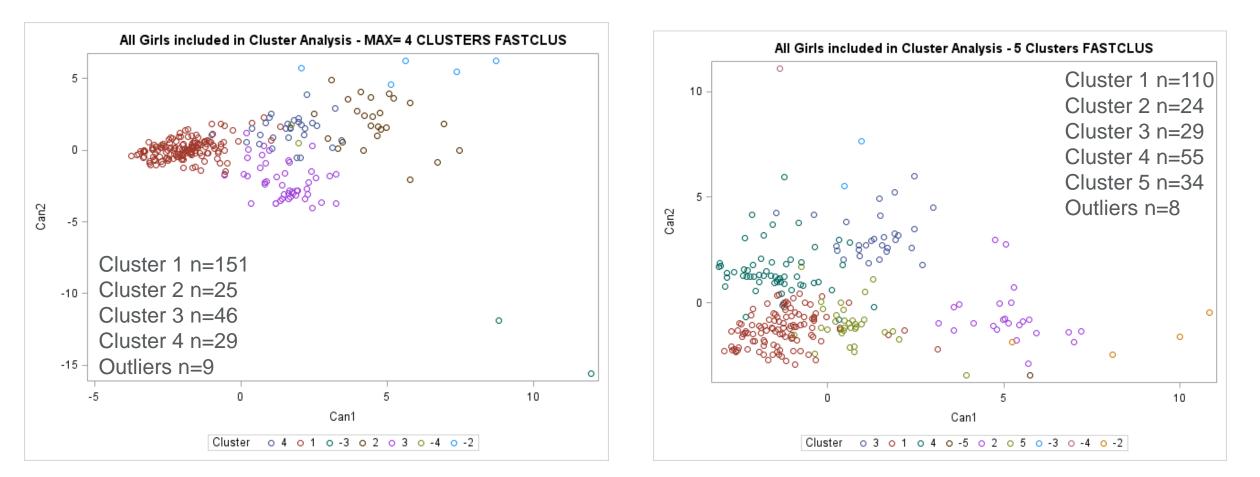
Proc Fastclus – Hormone Values at time =-6,0,6

- Cluster analysis will classify the participants into phenotype groups that exhibit similar clinically relevant hormone values related to the larche
- Identifies disjoint clusters of observations by distance (nearest centroid)
- Assigns participants to a cluster where the other participants are more similar to them than participants in another cluster. Each participant belongs to only one cluster.
- Uses *k*-means method (least squares)
 - User defines the number of clusters (k)
 - Observations are divided in to the clusters
 - The first k observations (no missing values) are selected as the initial seeds
 - Other observations are then assigned to the closest cluster
 - The cluster center is updated
 - Repeated in an iterative process until all observations are grouped into their closest cluster
- An adjusted distance is computed for missing data (FastIcus is the only cluster procedure that handles missing data)
- Good for datasets larger than 100
- Very sensitive to outliers and has a method to identify outliers in their own clusters (unlike other cluster procedures)
- Need to standardized the variables first because Fastclus uses an algorithm that emphasizes variables with larger variances.

1-Changing the number of Clusters CA - n=260; clusters = 6

Outliers = 7 Cluster 1 n=49 Cluster 2 n=17 Cluster 3 n=105 Cluster 4 n=33 Cluster 5 n=24 Cluster 6 n=25

- cluster 1 and 6 overlap implying they not distinct
- cluster 2 is really small (perhaps should be outliers?)
- Too many clusters????



1 -Changing the number of Clusters

CA - n=260; 4 clusters and 5 clusters

Still seems to be overlap of some of the clusters and there is still one large cluster. What if we look at that large cluster only?

Creating 4-6 clusters of the entire cohort (n=260) did not produce distinct clusters. This reinforces the results from PCA, 3 components that represent 74% of the variance should result in 3 clusters. But are we missing something?

Therefore let's try redoing the PCA-CA on only cluster 3 (N=172)

2 - CA on Cluster 3 (n=172) (mean values)

Hormone Phenotype Objective Predictors

Chracteristics of the 172: girls means reported unless noted.

		Cluster 3A	Cluster 3B	
				Significance
	Cohort	Not High	Low	(P value)*
	N=269	N=74	n=96	
Testosterone -6 [‡]	4.48	3.79	2.97	<0.001
Testoserone 0 [‡]	4.96	4.55	3.39	<0.001
Testosterone 6 [‡]	6.16	5.72	3.44	<0.001
Estrone -6 [‡]	4.00	3.54	2.65	<0.001
Estrone 0 [‡]	4.47	4.10	3.43	<0.001
Estrone +6 [‡]	6.09	5.45	3.53	<0.001
DHEA -6 [‡]	28.23	22.51	12.56	<0.001
DHEA 0 [‡]	30.79	31.00	13.63	<0.001
DHEA +6 [‡]	38.32	38.00	18.55	<0.001
Estradiol -6	2.83	2.07	2.22	<0.001
Estradiol 0 [‡]	3.37	2.67	2.88	<0.001
Estradiol +6 [‡]	5.38	3.51	3.05	< 0.001

* Comparison between clusters using analysis of variance for continuous variables.

Cluster 3a– hormones lower than the cohort averages by about 10% except 20% lower for DHEA-S at -6 and >20% lower for all E2 time periods

Cluster 3b – hormones much lower than the cohort, over 30% lower for all hormones except E2 at -6 and 6 and estrone at 0 (over 20% lower). E2 was over 40% lower at 6 and DHEA-S was 50% lower at all 3 time periods

Initially....

Hormones were used to define 4 phenotypes of sex hormones in girls around the time of thelarche.

Then....

After phenotypes were formed, additional variables were then examined to further describe the participants in each of the phenotypes.

Phenotype Characteristics - from CA (mean values)

Sex hormone serum concentrations of the girls according to the four phenotypes identified using principal component based cluster anlaysis DHEA-S (ug/dL), estrone and estradiol (pg/mL), testosterone (ng/dL)

	Cohor	ł	High I	notype 1 DHEA-S, T nd E1		notype 2 2, T and E1	Ν	notype 3a o High ormones		enotype 3b ow Hormones	
		N=269		N=42	U	N=37		N=74		N=96	
		Standard		Standard		Standard		Standard		Standard	
	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation	p-value
Testosterone -6	[‡] 4.48	2.69	6.89	2.53	7.00	3.22	3.79	1.60	2.97	1.29	< 0.0001
Testoserone 0^{\ddagger}	4.96	2.76	8.23	2.80	5.40	1.93	4.55	1.55	3.39	1.72	< 0.0001
Testosterone 6 [‡]	6.16	3.64	9.23	3.22	10.79	4.01	5.72	1.52	3.44	1.26	< 0.0001
Estrone -6 [‡]	4.00	2.19	6.18	1.16	5.24	2.11	3.54	1.68	2.65	1.27	< 0.0001
Estrone 0 [‡]	4.47	2.46	6.81	2.37	5.17	2.31	4.10	1.72	3.43	1.98	< 0.0001
Estrone +6 [‡]	6.09	4.46	8.10	2.39	11.78	2.92	5.45	1.94	3.53	1.72	< 0.0001
DHEA-S -6 [‡]	28.23	24.99	62.97	25.60	32.93	14.39	22.51	10.93	12.56	6.83	< 0.0001
DHEA-S 0 [‡]	30.79	26.08	68.13	24.80	24.91	12.42	31.00	10.77	13.63	6.15	< 0.0001
DHEA-S +6 [‡]	38.32	29.16	79.00	29.29	39.64	19.37	38.00	14.01	18.55	8.13	< 0.0001
Estradiol -6	2.83	3.32	2.46	1.75	4.60	2.78	2.07	1.75	2.22	1.96	< 0.0001
Estradiol 0 [‡]	3.37	4.22	3.68	2.61	4.46	4.71	2.67	2.37	2.88	3.05	< 0.0001
Estradiol + 6^{\ddagger}	5.38	7.16	5.40	4.04	17.25	10.48	3.51	2.60	3.05	3.55	< 0.0001

* Baseline values for the cohort given as mean unless noted. P values represent tests for groupwise differences between the phenotypes; values for the phenotypes represent mean values within the phenotypes. Comparison between phenotypes using Kruskal-Wallis for continuous variables and χ^2 for categorical.

‡ Objective predictive variables used for phenotype development.

Much higher values Higher values Much Lower values

Phenotype 1 – Higher DHEA-S (over 100% higher than the cohort mean at each time period)

Testosterone and E1 values over 50%
 higher than the cohort mean

— Phenotype 2 – High E2 values across the time period from 30%-200% higher than the mean of the cohort

• E1 90% higher at +6

 testosterone >50% higher at -6 and +6 vs the cohort mean

Phenotype 3a – hormones lower than the cohort averages by about 10% except

- 20% lower for DHEA-S at -6
 - >20% lower for all E2 time periods

Phenotype 3b– Over 30% lower levels for all hormones

- DHEA-S was 50% lower at all 3 time periods
- E1 was over 40% lower at 6 and
- E2 at -6 and 6 and E1 at 0 (over 20% lower)

Characteristics of Participants in each

University of CINCINNATI.

Phenotype (mean values unless noted)

Maturation and clinical characteristics of the girls according to the four phenotypes identified using principal component based cluster anlaysis DHEA-S (ug/dL), estrone and estradiol (pg/mL), testosterone (ng/dL)

			Phe	notype 1	Phe	notype 2	Pher	otype 3a	Phen	otype 3b	
		Cohort	8	DHEA-S, T and E1	0	2, T and E1	0	h Hormones		Hormones	
	Ν	1=269		N=42	ľ	N=37	I	N=74	N	N=96	
		Standard		Standard		Standard		Standard		Standard	
	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation	Mean	Deviation	p-value
Age of Thelarche (months)	108.26	13.20	113.24	11.29	112.49	13.16	106.36	12.98	104.05	12.31	< 0.0001
Age of Pubarche (months)	118.19	16.24	116.83	19.22	118.69	11.39	113.91	17.16	121.56	15.06	0.0345
Age of Menarche (months)	147.59	13.75	150.70	15.34	142.48	11.84	147.65	14.31	148.63	12.30	0.0606
Tempo (time between	39.01	13.06	36.39	11.50	30.55	10.27	40.50	10.87	45.12	12.58	< 0.0001
Pubertal Pathway (%)											0.0017
thelarche before pubarch	e 69.14%		66.67%		64.86%		64.86%		79.17%		
pubarche before thelarch	e 17.10%		26.17%		16.22%		28.38%		5.21%		
entered at the same tim	e 7.43%		7.14%		13.51%		4.05%		4.17%		
missing due to censorshi	p 6.32%		0.00%		5.41%		2.70%		11.46%		

* Baseline values for the cohort given as mean unless noted. P values represent tests for groupwise differences between the phenotypes; values for the phenotypes represent mean values within the phenotypes. Comparison between phenotypes using Kruskal-Wallis for continuous variables and χ^2 for categorical.

- No differences between the phenotypes existed for BMI, ethnicity, family history of breast cancer, mother's age of menarche or caregiver's education.
- Pairwise comparisons proved the age of menarche to be different between Phenotypes 1 and 2.

Phenotype 1 –latest age of thelarche (5 months) but earlier pubarche by 2 months, latest to menarche, more girls entering pubarche prior to thelarche.

Phenotype 2 - later age of thelarche , earliest to achieve menarche, shortest tempo,

Phenotype 3a –Early to thelarche and earliest to pubarche, more girls entering pubarche prior to thelarche.

Phenotype 3b -Earliest to Thelarche, latest to pubarche, longest tempo

Changes in hormone levels from one time window to the next (mean values unless noted)

Maturation and clinical characteristics of the girls according to the four phenotypes identified using principal component based cluster anlaysis DHEA-S (ug/dL), estrone and estradiol (pg/mL), testosterone (ng/dL)

		Phe	enotype 1	Phe	notype 2	Phen	otype 3a	Pher	notype 3b	
		6	and E1	8	,	8				
Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	p-value
1.26	4.68	1.81	4.75	-4.95	6.46	1.64	3.45	1.34	3.42	0.0045
2.38	5.50	3.54	4.31	12.76	10.09	1.97	2.94	0.20	3.60	< 0.0001
1.32	3.74	1.24	4.71	-0.73	4.62	1.65	2.87	1.72	3.35	0.1052
1.88	4.87	2.84	3.76	11.80	5.10	1.98	3.55	0.08	4.53	< 0.0001
9.68	24.85	17.15	21.26	-12.71	31.87	14.52	22.22	3.27	11.11	0.0001
15.14	26.71	27.27	41.84	28.38	39.36	15.37	21.16	8.90	14.42	0.1014
1.21 2.19	8.31 11.79	2.13 1.94	3.72 7.54	1.66	10.04 22.10	1.33 1.46	5.53 5.97	2.26 1.13	5.80 6.63	0.4542 0.0006
	Mean 1.26 2.38 1.32 1.88 9.68 15.14	Mean Deviation 1.26 4.68 2.38 5.50 1.32 3.74 1.88 4.87 9.68 24.85 15.14 26.71 1.21 8.31	Kindland High Cohort High N=269 Kandard Nean Deviation Mean 1.26 4.68 1.81 2.38 5.50 3.54 1.32 3.74 1.24 1.88 4.87 2.84 9.68 24.85 17.15 15.14 26.71 27.27 1.21 8.31 2.13	N=269 N=42 Standard Mean Standard Mean Deviation Mean Deviation 1.26 4.68 1.81 4.75 2.38 5.50 3.54 4.31 1.32 3.74 1.24 4.71 1.88 4.87 2.84 3.76 9.68 24.85 17.15 21.26 15.14 26.71 27.27 41.84 1.21 8.31 2.13 3.72	High DHEA-S, T High DHEA-S, T Cohort and E1 High E N=269 N=42 N Standard Mean Deviation Mean Deviation Mean Deviation 1.26 4.68 1.81 4.75 -4.95 2.38 5.50 3.54 4.31 12.76 1.32 3.74 1.24 4.71 -0.73 1.88 4.87 2.84 3.76 11.80 9.68 24.85 17.15 21.26 -12.71 15.14 26.71 27.27 41.84 28.38 1.21 8.31 2.13 3.72 1.66	High DHEA-S, T High DHEA-S, T Mean E1 N=269 Standard Standard Mean Deviation Mean Deviation Mean Deviation 1.26 4.68 1.81 4.75 -4.95 6.46 2.38 5.50 3.54 4.31 12.76 10.09 1.32 3.74 1.24 4.71 -0.73 4.62 1.88 4.87 2.84 3.76 11.80 5.10 9.68 24.85 17.15 21.26 -12.71 31.87 25.14 26.71 27.27 41.84 28.38 39.36 1.21 8.31 2.13 3.72 1.66 10.04	If the business of the transmission of the transmission of the transmission of transmissing transmission of transmission of transm	High DHEA-S, T High E2, T and E1 No High Hormones N=269 N=42 N=37 N=74 Mean Deviation Mean Deviation Mean Deviation 1.26 4.68 1.81 4.75 -4.95 6.46 1.64 3.45 2.38 5.50 3.54 4.31 12.76 10.09 1.97 2.94 1.32 3.74 1.24 4.71 -0.73 4.62 1.65 2.87 1.88 4.87 2.84 3.76 11.80 5.10 1.98 3.55 9.68 24.85 17.15 21.26 -12.71 31.87 14.52 22.22 15.14 26.71 27.27 41.84 28.38 39.36 15.37 21.16 1.21 8.31 2.13 3.72 1.66 10.04 1.33 5.53	High DHEA-S, T High E2, T and E1 No High Hormones All Low N=269 N=42 N=37 N=74 I Standard Standard Mean Deviation Mean 1.26 4.68 1.81 4.75 -4.95 6.46 1.64 3.45 1.34 2.38 5.50 3.54 4.31 12.76 10.09 1.97 2.94 0.20 1.32 3.74 1.24 4.71 -0.73 4.62 1.65 2.87 1.72 1.88 4.87 2.84 3.76 11.80 5.10	High DHEA-S, THigh E2, T and E1No High HormonesAll Low HormonesCohortand E1High E2, T and E1No High HormonesAll Low HormonesN=269N=42N=37N=74N=96StandardMeanDeviationMeanDeviationMeanDeviationMeanDeviationMeanDeviationMeanDeviation1.264.681.814.75-4.956.461.643.451.343.422.385.503.544.3112.7610.091.972.940.203.601.323.741.244.71-0.734.621.652.871.723.351.884.872.843.7611.805.101.983.550.084.539.6824.8517.1521.26-12.7131.8714.5222.223.2711.1115.1426.7127.2741.8428.3839.3615.3721.168.9014.421.218.312.133.721.6610.041.335.532.265.80

Phenotype 1 –large increase in DHEA-S from -6 to 0 and 0 to 6

Phenotype 2 – huge increase in E2 from 0 to 6, decrease in testosterone, estrone and DHEA-S from -6 to 0, larger increase all hormones from 0 to 6.

Phenotype 3a –larger increase in DHEA-S from -6 to 0 than the cohort

* Baseline values for the cohort given as mean unless noted. P values represent tests for groupwise differences between the phenotypes; values for the phenotypes represent mean values within the phenotypes. Comparison between phenotypes using Kruskal-Wallis for continuous variables and χ^2 for categorical.

 Δ = change in hormone value

Phenotype 3b –very few changes in the hormones over the time periods

Increase between time periods Decrease in values between -6 to 0 then an larger increase from 0 to 6

Survival analysis (Cox proportional-hazard models) were conducted in SAS using PHReg and controlling for covariates.

 $h(t,x)=h_0(t)\exp(\beta x)$

such that $h_0(t)$ is the underlying hazard function which is independent of x, x is the covariate and t stands for time. A unit increase in x multiplies the hazard by $\exp(\beta)$ or e^{β} for all values of t, β is assumed the same for all individuals.

Assumption of proportional hazards – additive changes in a variable cause corresponding multiplicative changes in the hazard function e.g. ratio of hazards for two individuals over time is constant

Girls who have not yet reached the pubertal milestone during the study or were lost to follow up prior to achieving it will be right censored.

Hazard Ratio (exp(β)) is the the measure of effect or risk of suffering the event/outcome.

- A ratio <1 indicates a reduced risk of reaching the pubertal outcome (eg delayed menarche) e.g HR=.88 means a 22% decreased risk for reaching menarche for every unit increase in mother's age of menarche.
- A ratio >1 indicates an increased risk of reaching menarche (eg early menarche) e.g. HR=1.44 means a 44% risk of reaching menarche every for unit of increase in DHEAS at -6 months.
- A ratio =1 indicates no relationship between the predictor and the age of pubertal outcome outcome.

Cincinnati Children's Cincinnati

Cox- Proportional model advantages

- does not require a certain probability function^{43,44}
- may include multiple covariates
- may include continuous and/or categorical covariates
- allows for the inclusion of girls who are right censored
- allows for interactions between covariates
- time varying covariates e.g. BMI% that changes over time vs only including the BMI% at the -12 month study visit

Cox-Proportional model assumption

Proportional hazards – additive changes in a variable cause corresponding multiplicative changes in the hazard function e.g. ratio of hazards for two individuals over time is constant

- Plot of the log-negative-log of the Kaplan Meier estimates of the survival function against the log of time should be parallel if the hazard is constant over time for a categorical predictor. ^{44,45}
- If a variable fails the assumption, will include a multiplicative with time.

Non-parsimonious Model

Besides the phenotypes, the models will include the following even if they are insignificant because they are known risk markers for early pubertal timing

- Race
- BMIz nearest but before age of the pubertal milestone
- Caregiver's education
- Mother's age of menarche
- Multiplicative interaction with time included if a variable failed the proportional hazard assumption

Risk Estimates of Pubertal Milestones

Proportional hazard ratio analysis of risk factors for age at pubertal milestones

	Age of	Thelarche	(months)	Age of	f Pubarche (m	onths)	Age of Menarche (months)			
	Hazard	Wald's		Hazard	Wald's		Hazard	Wald's	95%	
Variable	Ratio	95% CI	p-vlaue	Ratio	95% CI	p-vlaue	Ratio	С	Ι	p-vlaue
Phenotypes			< 0.0001			0.012				0.1254
DHEA-S (1) vs high estradiol (2)	0.93	0.59 1.48	0.7600	0.91	0.57 1.40	5 0.7013	0.55	0.32	0.93	0.0264
DHEA-S (1) vs no high hormones (3a)	0.63	0.43 0.93	0.0196	0.77	0.52 1.15	5 0.2042	0.88	0.57	1.35	0.555
DHEA-S (1) vs all low hormones (3b)	0.45	0.31 0.66	o <0.0001	1.32	0.91 1.93	0.1493	0.87	0.57	1.33	0.514
high estradiol (2) vs no high hormones (3a)	0.68	0.45 1.03	0.0656	0.85	0.56 1.29	0.4433	1.61	1.02	2.54	0.0427
high estradiol (2) vs all low hormones (3b)	0.48	0.32 0.73	0.0006	1.45	0.96 2.18	0.0752	1.59	1.01	2.52	0.0466
no high hormones (3a) vs all low hormones	0.71	0.52 0.97	0.0337	1.71	1.24 2.35	<u>5 0.0012</u>	0.99	0.70	1.41	0.9647
Race (all other vs black)	0.67	0.51 0.88	0.0256	0.01	0.00 0.00	<mark>5 <0.0001</mark>	0.01	0.00	0.30	0.0092
BMIZ closest to outcome	7.18	2.65 19.51	0.0001	1.16	1.05 1.30	0.0056	1.57	1.36	1.81	< 0.0001
Mother's age of menarche (years)			0.055			0.0837				0.1327
Under 12 vs ages 12-14	1.34	0.96 1.87	0.0905	1.15	0.81 1.62	0.432	1.20	0.83	1.74	0.3418
Under 12 vs at least 14	1.68	1.10 2.57	0.0168	1.58	1.04 2.42	2 0.0336	1.61	1.01	2.59	0.0468
ages 12-14 vs at least 14	1.26	0.89 1.77	0.1931	1.38	0.98 1.95	5 0.0664	1.35	0.91	1.99	0.1334
Caregiver's education level			0.9763			0.6314				0.3051
High school or less vs at least an										
associate's or bachelor's degree	1.00	0.67 1.49	0.9967	0.88	0.58 1.33	0.5491	0.73	0.45	1.18	0.1946
High school or less vs master's degree or										
more	0.97	0.68 1.38	0.8618	0.84	0.59 1.20	0.3376	0.97	0.65	1.44	0.8747
At least an associate's or bachelor's degree										
vs master's degree or more	0.97	0.70 1.35	0.8568	0.95	0.68 1.33		1.33	0.90	1.96	0.1478
race*age of milestone in months				0.96	0.94 0.98	3 0.0004	0.97	0.945	0.994	0.0166
bmiz closest to outcome* age of										
milestone in months	0.99	0.98 1.00	0.0036							

University of CINCINNATI.

- 1, 2 and 3a were less likely to enter early pubarche than 3b and 1 was also less likely than 3a.
- 3a was much more likely to enter thelarche earlier than 3b.
- 2 was 50% more likely to enter menarche earlier vs all 3 other phenotypes.
- White girls were half as likely to enter puberty early than black girls.
 - Being heavier increased the likelihood of entering puberty early.
- Girls whose mother's who entered puberty prior to 12 years old had a much higher chance of entering early puberty than those whose mothers entered after 14 years old.

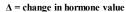
Characteristics of Participants in each Phenotype (mean values unless noted)

Maturation and clinical characteristics of the girls according to the four phenotypes identified using principal component based cluster anlaysis DHEA-S (ug/dL), estrone and estradiol (pg/mL), testosterone (ng/dL)

			Phe	enotype 1	Phe	notype 2	Pher	notype 3a	Pher	otype 3b	
	Cohort N=269		High DHEA-S, T and E1 N=42		High E2, T and E1 N=37		No High Hormones N=74		All Low Hormones N=96		
	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	Mean	Standard Deviation	p-value
Age of Thelarche (months)	108.26	13.20	113.24	11.29	112.49	13.16	106.36	12.98	104.05	12.31	< 0.0001
Age of Pubarche (months)	118.19	16.24	116.83	19.22	118.69	11.39	113.91	17.16	121.56	15.06	0.0345
Age of Menarche (months)	147.59	13.75	150.70	15.34	142.48	11.84	147.65	14.31	148.63	12.30	0.0606
Tempo (time between thelarche and menarche in months)	39.01	13.06	36.39	11.50	30.55	10.27	40.50	10.87	45.12	12.58	< 0.0001
BMIZ	0.33	1.02	0.29	0.96	0.14	0.97	0.42	1.10	0.40	1.03	0.5245
BMI Percentile	58.97	29.56	57.67	27.62	52.47	28.56	61.46	30.70	61.60	30.29	0.3667
Mother's Age of Menarche (%)											0.4507
less than 12 years old			14.29%		27.03%		25.68%		14.58%		
at least 12 years but less than 14 years old			66.67%		51.35%		55.41%		64.58%		
at least 14 years or older	20.07%		19.05%		21.62%		18.92%		20.83%		
Ethnicity (%)											0.7755
	31.60%		35.71%		27.03%		29.73%		34.38%		
Hispanic, White, Asian, All Other First or Second Degree Maternal Family Member Breast	· 68.40%		64.29%		72.97%		70.27%		65.63%		0.8573
Cancer Diagnosis (%) diagnosis of breast cancer	12 6 4 0/		11.90%		13.51%		16.21%		11.46%		0.8575
no diagnosis of breast cancer			83.33%		78.84%		78.38%		79.70%		
missing			4.76%		8.10%		5.40%		9.37%		
Caregiver's education (%)	7.00%		4.7070		0.1070		5.4070		2.3770		0.4303
high school degree or less	29.00%		40.48%		16.22%		27.03%		29.17%		
associate's or bachelor's degree			38.10%		54.05%		44.59%		43.75%		
more than a bachelor's degree	25.62%		21.43%		29.73%		28.38%		27.08%		
Pubertal Pathway (%)											0.0017
thelarche before pubarche	69.14%		66.67%		64.86%		64.86%		79.17%		
pubarche before thelarche	17.10%		26.17%		16.22%		28.38%		5.21%		
entered at the same time	7.43%		7.14%		13.51%		4.05%		4.17%		
missing due to censorship	6.32%		0.00%		5.41%		2.70%		11.46%		

* Baseline values for the cohort given as mean unless noted. P values represent tests for groupwise differences between the phenotypes; values for the phenotypes represent mean values within the phenotypes. Comparison between phenotypes using Kruskal-Wallis for continuous variables and γ^2 for categorical.

Phenotype 1 – (High DHEA-S) latest age of thelarche (5 months) but earlier pubarche by 2 months, latest to menarche, more black


University of CINCINNATI

Cincinnati Children's

Phenotype 2 – (High E2) later age of thelarche (4 months), very lean girls, less black vs all other

Phenotype 3a – (Not High) Early to thelarche and earliest to pubarche, more obese girls.

Phenotype 3b – (Low) Earliest to Thelarche, latest to pubarche (longest time in between the two), more obese girls, more black

Assumptions of Tests

- Pearson correlation coefficient measures linear correlation between two continuous variables,
 - ranges between -1 and 1
 - based on covariance strength, normal and linear and not too many outliers
 - Can use Spearman's Rank if not linear or normal
- Chi Square for categorical variables. Look at the proc freq race*education (use Fischer's exact if expected value is <5 in proc freq of race*education) – independent categories, mutually exclusive, non-parametric (so no distribution assumption), groups are of equal sizes, not large amounts of categories (e.g.20), not paired e.g. mother and child,
- T Test assumptions equal variance, random independent samples, normal if a small sample size

Study Measurements Effect Modifier or Confounder?

- Modifier magnitude of the effect on the outcome differs depending on a third variable; true relationship
 - e.g. a treatment may work for men but not women so sex is an effect modifier, UV induced cancer rate is higher for those with a rare hereditary defect
 - report individual stratified findings (they will be significantly different from each other)
- Confounder variable has an association with both the exposure and the outcome but does not lie in the causal pathway; false relationship
 - e.g. birth order and mother's age with outcome of down syndrome (if you stratify you see it is not birth order but age that effects the likelihood of down syndrome)
 - Stratify (these findings will be similar but different by at least 10% from the total finding) and use Mantel-Haenszel pooled odds ratio or risk ratio
 - Multivariable modeling

$$\widehat{RR}_{cmh} = \frac{\sum \frac{a_i(c_i + d_i)}{n_i}}{\sum \frac{c_i(a_i + b_i)}{n_i}} \qquad \widehat{OR}_{cmh} = \frac{\sum \frac{a_i d_i}{n_i}}{\frac{b_i c_i}{n_i}}$$

Background – Hormones not included

- SHBG declines during puberty
- Insulin-like Growth Factor -1 (IGF-1) does not increase until later stages of thelarche and closer to menarche
- DHEA 98% of circulating DHEA is in the form of DHEAS, DHEA and DHEAS levels run parallel and DHEAS is more stable to measure.
- Androstenedione is either secreted or converted into testosterone, has few effects of its own.
- Estrogen group of similar female hormones: estradiol, estrone, estiol (minor effect, best detected after a 24 urine collection)

- 1. Marshall WA, Tanner JM. Variation in pattern of pubertal changes in girls. *Arch Dis Child*. 1969;44: 291-303.
- 2. Euling SY, Herman-Giddens ME, Lee PA, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: Panel findings. *Pediatrics* 2008;121(Suppl 3): S172-91
- 3. McDowell MA, Brody DJ, Hughes JP. Has age at menarche changed? Results from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. *J of Adolescent Health* 2007;40: 227-231.
- 4. Biro FM, Galvez MP, Greenspan LC, et al. Pubertal Assessment Method and baseline characteristics in a mixed longitudinal study of girls. *Pediatrics* 2010;126: e583-e590.
- 5. Cabrera SM, Bright GM, Frane JW, et al. Age of thelarche and menarche in contemporary US females: a cross sectional analysis. *J Pediatr Endocrinol Metab.* 2014 January;27(0): 47-51.
- 6. Biro FM, Greenspan LC, Galvez MP, et al. Onset of Breast Development in a longitudinal cohort. *Pediatircs* 2013;132: 1019-1027
- 7. Anderson SE, Dallal GE, Must A. Relative weight and race influence average age of menarche: results from two national representative surveys of US girls studied 25 years apart. *Pediatrics* 2003 April; 844.
- 8. Ouyang F, Perry MJ, Venners SA, Chen C, Wang B, et al. Serum DDT, age of menarche, and abnormal menstrual cycle length. *Occupational and Environmental Medicine*. 2005 Dec; 878.
- 9. Wolff MS, Britton JA, Boguski L, Hochman S, Maloney N, et al. Environmental exposures and puberty in inner-city girls. *Environmental Research*. 2008; 107:393-400.
- 10. Colon I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. *Environmental Health Perspectives*. 2000 Sept;108(9):895-900.
- 11. Rockhill B, Moorman PG Newman B. Age of menarche, time to regular cycling, and breast cancer (North Caroline, United States). *Cancer Causes Control* 1998;9(4): 447-453.
- 12. Garland M. Hunter DJ, Colditz GA, et al. Menstrual cycle characteristics ad history of ovulatory infertility in relation to breast cancer risk in a large cohort of US women. *Am J Epidemiol*. 1998;147(7): 636-643.
- 13. Clavel-Chapelon F. Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer: results from a large cohort of French women. *Br J Cancer* 2002;86(5): 723-727.

- 14. Bodicoat, et al. Timing of pubertal stages and breast cancer risk: the breakthrough generations study. *Breast Cancer Research* 2014; 16:R18.
- 15. Swerdloff R, Odell W. Hormonal mechanisms in the onset of puberty. *Postgraduate Medical Journal* 1975 April;51: 200-208.
- 16. Peper JS, Dahl DE. Surging hormones: brain behavior interactions during puberty. *Curr Dir Psychol Sci.* 2013 April;22(2): 134-139.
- 17. Braude, P, Hamilton D. Hormone changes during puberty, pregnancy, and menopause. *Obstetric and Gyneocologic Dermatology* 2008;3:3-12.
- 18. Conley CS, Rudolph KD. The emerging sex difference in adolescent depression: Interacting contributions of puberty and peer stress. *Dev Psychopathol*. 2009;21: 593–620.
- 19. Stice E, Presnell K, Bearman SK. Relation of early menarche to depression, eating disorders, substance abuse, and comorbid psychopathology among adolescent girls. *Dev Psychol.* 2001;37: 608–619.
- 20. Kaltiala-Heino R, Kosunen E, Ripela M. Pubertal timing, sexual behaviour and self-reported depression in middle adolescence. *Journal of Adolescence* 2003; 26: 531-545.
- 21. Rudolf KD, Troop-Gordon W, Lambert SF, Nastuaki MN. Long-term consequences of pubertal timing for youth depression: Identifying personal and contextual pathways of risk. *Development and Psychopathology* 2014;26: 1423-1444.
- 22. Copeland W, Shanahan L, Miller S, Costello EJ, Angold A, Maughan B. Outcomes of early pubertal timing in young women: a prospective population-based study. *The American Journal of Psychiatry* 2010 Oct;167,10:1218-1225.
- 23. Mendle J, Turkheimer E, Emery R. Detrimental psychological outcomes associated with early pubertal timing in adolescent girls. *Developmental Review* 2007;151-171.
- 24. Deardorff J, Gonzales N, Christopher F, Roosa M, Millsap R. Early puberty and adolescent pregnancy: the influence of alcohol use. *Pediatrics* Dec 2005. 116(6): 1451-1456.
- 25. Dowling J, Bellis M. Early pubertal onset and its relationship with sexual risk taking, substance use and anti-social behaviour: a preliminary cross-sectional study. *BMC Public Health* 2009;9:446.
- 26. Baumrind D. The influence of parent style on adolescent competence and substance abuse. *J Early Adolesc.* 1991;11:56-95.
- 27. Chassin L, Flora DB, King KM. Trajectories of alcohol and drug use and dependence from adolescence to adulthood: the effects of familial alcoholism and personality. *J Abnorm Psychol.* 2004;113:483-498.

- 28. Tschann JM, Adler NE, Irwin CE, et al. Initiation of substance use in early adolescence: the roles of pubertal timing and emotional distress. *Health Psychol.* 1994:13;326-33.
- 29. Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. *International Journal of Obesity* 2013;37: 1036-1043.
- 30. Widen E, Silventoinen K, Sovio U, et al. Pubertal Timing and Growth Influence Cardiometabolic Factors in Adult Males and Females. *Diabetes Care* 2012 Apr; 35(4): 850-856.
- 31. <u>Lakshman</u> R, <u>Forouhi</u> NG, <u>Sharp</u> SJ, et al. Early age at menarche associated with cardiovascular disease and mortality. *Journal of Clinical Endocrinology & Metabolism* 2009; 94(12): 4953-4960.
- 32. Pierce MB, Kuh D, Hardy R. Role of lifetime body mass index in the association between age of puberty and adult lipids: findings from men and women in the British birth cohort. *Ann Epidemiol.* 2010;20:676-682.
- 33. La Vecchia C, Negri E, Bruzzi P, Dardannoni G, Decarli A, Franceschi S, Palli D, Talamini R. The role of age at menarche and at menopause on breast cancer risk: combined evidence from four case-control studies. *Ann Oncol.* 1992; 3:625-629.
- 34. Costofcancer.org
- 35. Mervish NA, Gardiner EW, Galvez MP et al. Dietary flavonol intake is associated with age of puberty in a longitudinal cohort of girls. *Nutrition Research* 2013;33: 534-542.
- 36. Cattran AM, Kalkwarf HJ, Pinney SM, et al. Bone density and timing of puberty in a longitudinal study of girls. *J Pediatr Adolesc Gynecol.* 2015 June;28(3): 170-172.
- 37. Baer HJ, Colditz GA, Willett WC, Dorgan JF. Adiposity and sex hormones in girls. *Cancer Epidemiol Biomarkers Prev.* 2007;16(9).1880-1888.
- 38. Ruder EH, Harman TJ, Rovine MJ, Dorgan JF. Birth characteristics and female sex hormone concentrations during adolescence: results from the Dietary Intervention study in Children. *Cancer Causes Control.* 2011;22: 611-621.
- 39. Biro FM, Pinney SM, Huang B, et al. Hormone Changes in Peripubertal girls. *J Clin Endocrinol Metabl.* 2014 Oct; 99(10): 3829-3835.
- 40. https://www.nidcd.nih.gov/about/mission

- 41. Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. *Appl Occup Enfrion Hyg.* 1990 Jan;5(1):46-51.
- 42. van Wieringen JC, Roede MJ, Wit JM. Growth diagrams for patient care. *Tijdschr Kinder-geneeskd.* 1985;53(4):147-152.
- 43. Allison P. Event History and Survival Analysis: Thousand Oaks, CA. SAGE. 2014. 2nd ed.
- 44. Cantor A. Extending SAS Survival Analysis Techniques for Medical Research: Cary, NC. SAS Institute Inc., 1997.
- 45. Kukhareva P. Cox Proportional Hazard model evaluation in one shot. Collaborative Studies Coordinating Center, UNC, Chapel Hill, NC. (n.d.)
- 46. Wilson M. Assessing Model Adequacy in Proportional Hazards Regression. Indianapolis, IN. (n.d.)
- 47. Landis JR, Koch GG. The measurement of observer agreement for categorical data. *Biometrics* 1997;33(1):159-174.
- 48. Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. *Controlled Clinical Trials* 2000;21: 552-560.
- 49. Schoenfeld DA. Sample-size formula for the Proportional-Hazards regression model. *Biometrics* 1983;39: 499-503.
- 50. Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003-2006. *Journal of American Medical Association* 2008;299(20);2401-2405.
- 51. <u>Bergsten-Brucefors A.</u> A note on the accuracy of recalled of age of menarche. *Jrnl Annals of Human Biology* 1976;3:71-73.
- 52. Koo MM, Rohan TE. Accuracy of short-term recall of age of menarche. *Jrnl Annals of Human Biology* 1997. Jan-Feb;24(1):61-64.
- 53. Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. *Experimental cell research*. 2013;319(11):1671-1678

An oral dissertation defense in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine

DISSERTATION COMMITTEE: Susan Pinney, PhD (Chair, Advisor) Frank Biro, MD Iris Gutmark-Little, MD Changchun Xie, PhD

Agenda

- Background
- Methods
- Objective, Hypothesis and Aims
- Aim 1
- Aim 2
- Aim 3
- Limitations
- Strengths
- Future Directions

Background

Puberty

- The beginning of puberty in girls is considered the beginning of breast development, thelarche.
- There are several pubertal milestones besides the larche:
 - Pubarche first appearance of pubic hair
 - Menarche first menstrual bleeding, occurs about two years after thelarche
- Puberty can last 1-7 years.
- Puberty starts on average between the ages of 8 and 13.
- Puberty alters a girl's body into one with full sexual capabilities.
- Girls experience changes in their physique, hormones levels, and brain development.
- Wide disparity in age of onset and tempo in girls as well as the pathway of puberty.

Age of Menarche

- Girls are experiencing menarche at an earlier age than in previous generations.¹
 - Girls born prior to 1920 had an average age of menarche of 13.3 years.¹
 - Girls born between 1980 and 1984 reported an average age of menarche of 12.4 years.¹
 - Girls born between 1998 and 1999 reported a median age of menarche of 12.25 years.²
- Risk factors linked to this earlier age of menarche include higher BMI (body mass index),¹ race/ethnicity (African American),³ and endocrine disrupters.⁴

Euling SY, Herman-Giddens ME, Lee PA, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: Panel findings. Pediatrics 2008;121(Suppl 3): S172-91
 Biro FM, Pajak A, Wolff MS, Pinney SM, Windham GC, Galvez MP, Greenspan LC, Kushi LH, Teitelbaum SL. Age of menarche in a longitudinal US Cohort. J Pediatr Adolesc Gynecol. 2018; 31; 339-345.
 Cabrera SM, Bright GM, Frane JW, et al. Age of thelarche and menarche in contemporary US females: a cross sectional analysis. J Pediatr Endocrinol Metab. 2014 January;27(0): 47-51.
 Ouyang F, Perry MJ, Venners SA, Chen C, Wang B, et al. Serum DDT, age of menarche, and abnormal menstrual cycle length. Occupational and Environmental Medicine. 2005 Dec; 878.

Health Risks due to Early Menarche

- Early menarche has been linked with depression in the later teenage years,¹ earlier sexual activity,² eating disorders¹ and substance abuse.¹
- Poor health outcomes later in life include increased risk of heart disease, higher BMI, increased fasting insulin and other risks of heart disease.³
- Early menarche is the most widely known and established risk factor for breast cancer.³
 - 9% decrease in risk for every year of delayed of menarche in premenopausal women.⁴
 - 4% decrease in risk for every year of delayed menarche in post menopausal women.⁴
 - The cost of treating breast cancer was greater than \$16.5 billion in 2010. Costofcancer.org

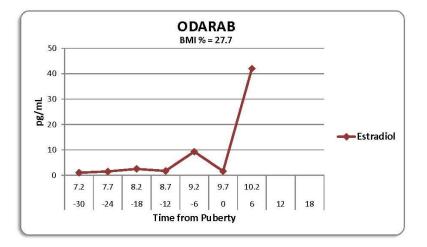
2 Kaltiala-Heino R, Kosunen E, Ripela M. Pubertal timing, sexual behaviour and self-reported depression in middle adolescence. Journal of Adolescence 2003; 26: 531-545.

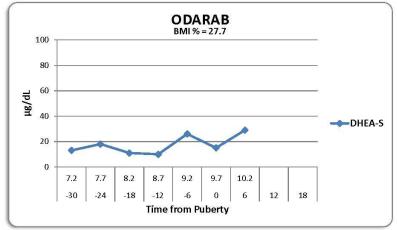
3 Widen E, Silventoinen K, Sovio U, et al. Pubertal Timing and Growth Influence Cardiometabolic Factors in Adult Males and Females. *Diabetes Care* 2012 Apr; 35(4): 850-856.

University of CINCINNATI.

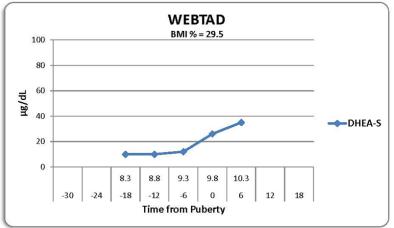
Cincinnati

4 Clavel-Chapelon F. Differential effects of reproductive factors on the risk of pre- and postmenopausal breast cancer: results from a large cohort of French women. Br J Cancer 2002;86(5): 723-727.


¹ Mendle J, Turkheimer E, Emery R. Detrimental psychological outcomes associated with early pubertal timing in adolescent girls. Developmental Review 2007;151-171.


Hypothesis and Specific Aims



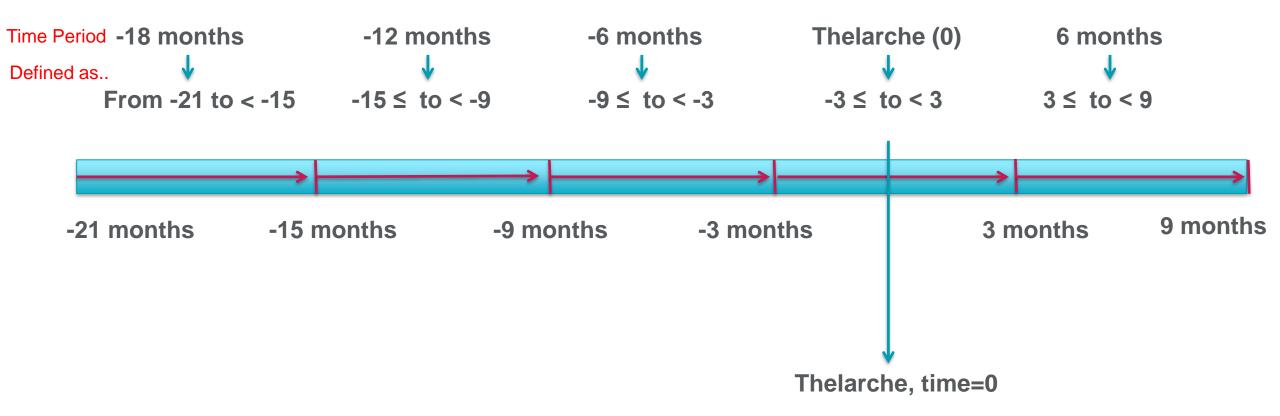

Previous Look at Individual Girl's Hormones

Hypothesis

In young girls, relative levels or changes in DHEA-S, estrone, estradiol, and testosterone around the time of thelarche, when considered together as an individual hormone phenotype, are directly related to the age at pubertal milestones (thelarche, pubarche and menarche).

- Specific Aim 1 Describe the serum DHEA-S, estradiol, estrone and testosterone levels in girls measured in 6 month increments from 18 months prior to 6 months after the age of thelarche.
- **Specific Aim 2** –Classify phenotypes of the sex hormones using the hormone levels across the different time windows relative to the larche.
- **Specific Aim 3** Use multivariable survival analysis to determine which among the sex hormone profile phenotypes (consisting of DHEA-S, estradiol, estrone and testosterone) are predictive of ages of thelarche, pubarche, and menarche to allow researchers to further understand why some girls experience pubertal milestones at an earlier age than others.

Methods



Five time windows relative to the larche visit were defined.

Eligibility of Girls Cincinnati Cohort (n=379)

		Eligible		Total
	n	Girls	Observations	Hormones
Hormone 2015 Dataset		253	975	3480
Hormone 2016 Dataset		205	5 425	1360

Deletion of Observations		303	1307	4840
Remove duplicates for a girl at the same visit		303	1307	4836
Keep only Hormones in -18 to +6 time period	-4	299	1046	3902
Keep girls with at least two hormone measurements during -18				
to +6	-30	269	1009	3764
Keep only 1 visit per bucket*		269	935	3493

Sex Hormone Measurements

Serum hormone levels (continuous)

- Samples were frozen at -80°C.
- Analysis performed by Esoterix Labs.
- Estradiol, Estrone and Testosterone were measured by High Performance Liquid Chromatography with tandem mass spectrometry (HPLC-MS) which is very sensitive compared to other methods.
- Radioimmuno assay (RIA) was used to measure DHEAS for one batch and HPLC-MS for a second batch.
- Missing data was due to missing a study visit, refusing to have blood drawn or insufficient amount of blood serum to measure.
- Serum concentrations of these hormones are known to change during puberty.

Sex Hormone Measurements

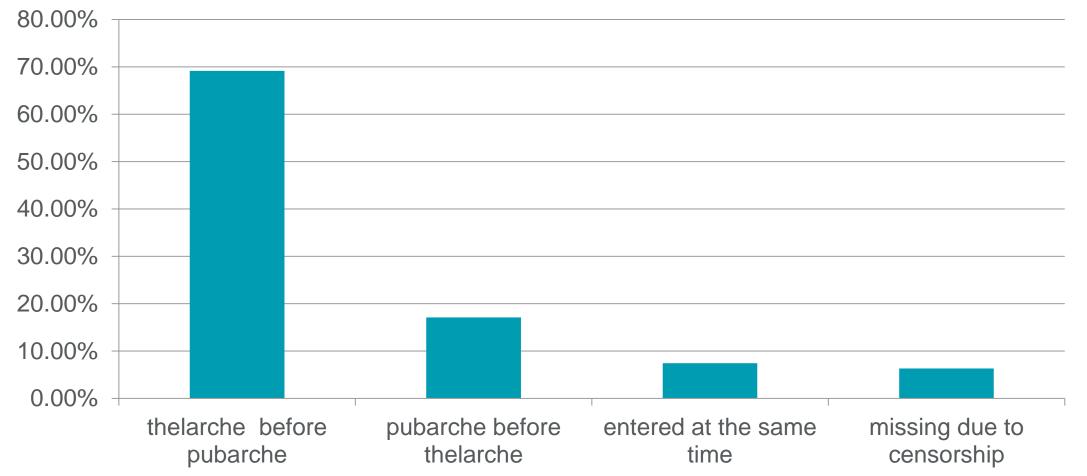
Serum hormone levels (continuous)

Lower Limit of Quantification (LLOQ) is the value at which the coefficient of variation (standard deviation / mean) <20% (<25% for DHEAS).

- Measure of precision at low analyte levels
- If the measurement was <LLOQ (but not canceled or insufficient), the LLOQ/ $\sqrt{2}$ was used.

LLOQ	1 st Batch n=252	2 nd Batch n=51
DHEA-S µg/dL	10	10
Estradiol pg/mL	1	1
Estrone pg/mL	2.5	2.5
Testosterone ng/dL	3	2.5

Aim 1


Describe the serum DHEA-S, estradiol (E2), estrone (E1) and testosterone (T) levels in girls measured in 6 month increments from 18 months prior to 6 months after the age of thelarche.

Maturation Information

Average Age of Thelarche – 108.26 months (9.02 years) Average Age of Pubarche – 118.19 months (9.85 years) Average Age of Menarche – 147.52 months (12.29 years) Average tempo – 39 months (3.25 years)

Pubertal Pathway

Aim 2

Classify phenotypes of the sex hormones using hormone levels across the different time points relative to the larche.

Two or more hormone data points used together as a phenotype in this analysis may refer to:

- two or more measurements of a certain hormone in an individual girl at different time points (such as the change in E2 from time=-18 to -12 months relative to thelarche)
- measurements of at least two hormones taken at the same or different time points in time (E2 and DHEA-S at time=-6) relative to the larche.

Correlations Absolute Hormones

R ≤0.25	* indicates R>0.25 therefore correlated																				
R>0.25 to 0.4	* indic	ates	R>0).25 t	here	ore	correla			ام میں ا	on 11	ם . ה ו	• •								
R>0.4 to 0.6								Prob > r under H0				0: Rno=0									
R>0.6			Es	tradi	iol			Est	rone				Fest	oste	rone			DH	IEA-	s,	
		-18	-12	-6	0	+6	-18	-12	-6	0	+6	-18	-12	-6	0	+6	-18	-12	-6	0	+6
Estradiol	-18	1.00000 136 0.15998	0.15998 0.1256 93	0.16729 0.0880 105 0.15079	0.70701 <.0001 83 0.02929	0.00209 0.9838 97 0.13030	0.37863 <.0001 136	0.15172 0.1466 93 0.84194	0.15393 0.1169 105 0.11513	0.32956 0.0023 83 0.10693	0.10145 0.3228 97 0.16173	0.01617 0.8674 109	0.06485 0.5236 99 0.55499	0.10064 0.3216 99 0.03894	0.11009 0.3218 83	0.10420 0.2997 101 0.10209	0.00396 0.9636 135	-0.00092 0.9927 102	0.06593 0.4978 108 0.00950	-0.01327 0.9035 86	0.0174 0.858 10 0.1136
	-12	0.1256 93	1.00000	0.0959 123	0.7624 109	0.1670 114	0.25881 0.0122 93	<.0001 164	0.2048 123	0.2685 109	0.0856 114	-0.00996 0.9288 83	<.0001 155	0.6715 121	-0.04270 0.6504 115	0.2632 122	-0.03810 0.7052 101	0.18465 0.0190 161	0.9142 131	0.01845 0.8441 116	0.201
	-6	0.16729 0.0880 105	0.15079 0.0959 123	1.00000	0.17799 0.0470 125	0.26571 0.0018 135	-0.02067 0.8342 105	0.06923 0.4467 123	0.30035 <.0001 191	0.09281 0.3013 126	0.40442 <.0001 134	-0.01215 0.9111 87	-0.01769 0.8473 121	0.07310 0.3378 174	0.02703 0.7611 129	0.28938 0.0004 146	-0.00012 0.9990 109	-0.00276 0.9754 127	0.01610 0.8274 186	-0.06293 0.4718 133	0.1247 0.125 15
	0	0.70701 <.0001 83	0.02929 0.7624 109	0.17799 0.0470 125	1.00000 180	0.11547 0.1997 125	0.27278 0.0126 83	0.04140 0.6676 110	0.18869 0.0343 126	0.50106 <.0001 180	0.27551 0.0020 124	-0.02977 0.8039 72	-0.04451 0.6489 107	0.08198 0.3693 122	0.26122 0.0006 171	0.22521 0.0092 133	0.00618 0.9544 88	-0.00125 0.9896 111	0.02198 0.8025 132	0.03138 0.6802 175	0.0913 0.286 13
	+6	0.00209 0.9838 97	0.13030 0.1670 114	0.26571 0.0018 135	0.11547 0.1997 125	1.00000 185	0.07224 0.4820 97	0.30193 0.0011 114	0.26700 0.0017 135	0.02034 0.8211 126	0.69192 <.0001 184	0.10477 0.3613 78	0.16326 0.0799 116	0.26358 0.0019 137	0.06049 0.4976 128	0.43415 <.0001 176	0.16612 0.0986 100	0.24587 0.0068 120	0.24150 0.0034 145	0.05960 0.4989 131	0.0891 0.229 18
Estrone	-18	0.37863 <.0001 136	0.25881 0.0122 93	-0.02067 0.8342 105	0.27278 0.0126 83	0.07224 0.4820 97	1.00000 136	0.64306 <.0001 93	0.59362 <.0001 105	0.55022 <.0001 83	0.43363 <.0001 97	0.68544 <.0001 109	0.55792 <.0001 99	0.52180 <.0001 99	0.49678 <.0001 83	0.40474 <.0001 101	0.49981 <.0001 135	0.48329 <.0001 102	0.50929 <.0001 108	0.56724 <.0001 86	0.4893 <.000 10
-	-12	0.15172 0.1466 93	0.84194 <.0001 164	0.06923 0.4467 123	0.04140 0.6676 110	0.30193 0.0011 114	0.64306 <.0001 93	1.00000 165	0.71594 <.0001 123	0.50795 <.0001 110	0.48849 <.0001 114	0.15304 0.1672 83	0.64450 <.0001 156	0.53639 <.0001 121	0.51491 <.0001 116	0.55938 <.0001 122	0.10262 0.3072 101	0.34627 <.0001 162	0.44059 <.0001 131	0.26788 0.0035 117	0.3362 0.000 12
	-6	0.15393 0.1169 105	0.11513 0.2048 123	0.30035 <.0001 191	0.18869 0.0343 126	0.26700 0.0017 135	0.59362 <.0001 105	0.71594 <.0001 123	1.00000 192	0.63389 <.0001 127	0.61997 <.0001 134	0.58512 <.0001 87	0.25903 0.0041 121	0.70292 <.0001 175	0.59853 <.0001 129	0.54261 <.0001 146	0.44836 <.0001 109	0.45648 <.0001 127	0.48211 <.0001 187	0.43159 <.0001 134	0.5004 <.000 15
	0	0.32956 0.0023 83	0.10693 0.2685 109	0.09281 0.3013 126	0.50106 <.0001 180	0.02034 0.8211 126	0.55022 <.0001 83	0.50795 <.0001 110	0.63389 <.0001 127	1.00000 181	0.56620 <.0001 125	0.54291 <.0001 72	0.23422 0.0152 107	0.49228 <.0001 123	0.72790 <.0001 172	0.48426 <.0001 134	0.27556 0.0094 88	0.33219 0.0004 111	0.42521 <.0001 133	0.40462 <.0001 176	0.5101 <.000 13
	+6	0.10145 0.3228 97	0.16173 0.0856 114	0.40442 <.0001 134	0.27551 0.0020 124	0.69192 <.0001 184	0.43363 <.0001 97	0.48849 <.0001 114	0.61997 <.0001 134	0.56620 <.0001 125	1.00000 184	0.29152 0.0096 78	0.32677 0.0003 116	0.43298 <.0001 136	0.49133 <.0001 127	0.70939 <.0001 175	0.33697 0.0006 100	0.36589 <.0001 120	0.40236 <.0001 144	0.44092 <.0001 130	0.3820 <.000 18
Testosterone	-18	0.01617 0.8674 109	-0.00996 0.9288 83	-0.01215 0.9111 87	-0.02977 0.8039 72	0.10477 0.3613 78	0.68544 <.0001 109	0.15304 0.1672 83	0.58512 <.0001 87	0.54291 <.0001 72	0.29152 0.0096 78	1.00000 120	0.30368 0.0040 88	0.73321 <.0001 80	0.66217 <.0001 73	0.52310 <.0001 83	0.54304 <.0001 120	0.57421 <.0001 91	0.56761 <.0001 90	0.62001 <.0001 75	0.5821 <.000 8
	-12	0.06485 0.5236 99	0.55499 <.0001 155	-0.01769 0.8473 121	-0.04451 0.6489 107	0.16326 0.0799 116	0.55792 <.0001 99	0.64450 <.0001 156	0.25903 0.0041 121	0.23422 0.0152 107	0.32677 0.0003 116	0.30368 0.0040 88	1.00000 168	0.41128 <.0001 118	0.28095 0.0025 114	0.31471 0.0004 122	0.20162 0.0382 106	0.32158 <.0001 166	0.25666 0.0035 128	0.18786 0.0444 115	0.2388 0.006 13
	-6	0.10064 0.3216 99	0.03894 0.6715 121	0.07310 0.3378 174	0.08198 0.3693 122	0.26358 0.0019 137	0.52180 <.0001 99	0.53639 <.0001 121	0.70292 <.0001 175	0.49228 <.0001 123	0.43298 <.0001 136	0.73321 <.0001 80	0.41128 <.0001 118	1.00000 188	0.61781 <.0001 125	0.61184 <.0001 144	0.55301 <.0001 103	0.55325 <.0001 124	0.52658 <.0001 187	0.49673 <.0001 130	0.4977 <.000 15
	0	0.11009 0.3218 83	-0.04270 0.6504 115	0.02703 0.7611 129	0.26122 0.0006 171	0.06049 0.4976 128	0.49678 <.0001 83	0.51491 <.0001 116	0.59853 <.0001 129	0.72790 <.0001 172	0.49133 <.0001 127	0.66217 <.0001 73	0.28095 0.0025 114	0.61781 <.0001 125	1.00000 184	0.66151 <.0001 139	0.41605 <.0001 89	0.48773 <.0001 118	0.50349 <.0001 136	0.51430 <.0001 180	0.5769 <.000
	+6	0.10420 0.2997 101	0.10209 0.2632 122	0.28938 0.0004 146	0.22521 0.0092 133	0.43415 <.0001 176	0.40474 <.0001 101	0.55938 <.0001 122	0.54261 <.0001 146	0.48426 <.0001 134	0.70939 <.0001 175	0.52310 <.0001 83	0.31471 0.0004 122	0.61184 <.0001 144	0.66151 <.0001 139	1.00000 199	0.33753 0.0005 104	0.40425 <.0001 125	0.46873 <.0001 156	0.42147 <.0001 141	0.4791 <.000 19
DHEA-S	-18	0.00396 0.9636 135	-0.03810 0.7052 101	-0.00012 0.9990 109	0.00618 0.9544 88	0.16612 0.0986 100	0.49981 <.0001 135	0.10262 0.3072 101	0.44836 <.0001 109	0.27556 0.0094 88	0.33697 0.0006 100	0.54304 <.0001 120	0.20162 0.0382 106	0.55301 <.0001 103	0.41605 <.0001 89	0.33753 0.0005 104	1.00000 147	0.87529 <.0001 110	0.87399 <.0001 115	0.81573 <.0001 92	0.7956 <.000 11
	-12	-0.00092 0.9927 102	0.18465 0.0190 161	-0.00276 0.9754 127	-0.00125 0.9896 111	0.24587 0.0068 120	0.48329 <.0001 102	0.34627 <.0001 162	0.45648 <.0001 127	0.33219 0.0004 111	0.36589 <.0001 120	0.57421 <.0001 91	0.32158 <.0001 166	0.55325 <.0001 124	0.48773 <.0001 118	0.40425 <.0001 125	0.87529 <.0001 110	1.00000 175	0.86628 <.0001 135	0.84445 <.0001 119	0.8332 <.000 13
	-6	0.06593 0.4978 108	0.00950 0.9142 131	0.01610 0.8274 186	0.02198 0.8025 132	0.24150 0.0034 145	0.50929 <.0001 108	0.44059 <.0001 131	0.48211 <.0001 187	0.42521 <.0001 133	0.40236 <.0001 144	0.56761 <.0001 90	0.25666 0.0035 128	0.52658 <.0001 187	0.50349 <.0001 136	0.46873 <.0001 156	0.87399 <.0001 115	0.86628 <.0001 135	1.00000 201	0.89845 <.0001 140	0.8765 <.000 16
r	0	-0.01327 0.9035 86	0.01845 0.8441 116	-0.06293 0.4718 133	0.03138 0.6802 175	0.05960 0.4989 131	0.56724 <.0001 86	0.26788 0.0035 117	0.43159 <.0001 134	0.40462 <.0001 176	0.44092 <.0001 130	0.62001 <.0001 75	0.18786 0.0444 115	0.49673 <.0001 130	0.51430 <.0001 180	0.42147 <.0001 141	0.81573 <.0001 92	0.84445 <.0001 119	0.89845 <.0001 140	1.00000 190	0.8800 <.000 14
	+6	0.01748 0.8582 107	0.11363 0.2016 128	0.12473 0.1258 152	0.09136 0.2866 138	0.08910 0.2291 184	0.48931 <.0001 107	0.33625 0.0001 128	0.50045 <.0001 152	0.51015 <.0001 139	0.38204 <.0001 184	0.58219 <.0001 88	0.23882 0.0062 130	0.49775 <.0001 150	0.57693 <.0001 142	0.47916 <.0001 198	0.79568 <.0001 110	0.83328 <.0001 134	0.87650 <.0001 162	0.88023 <.0001 146	1.0000

- All significant correlations are positive
- Lack of correlation of E2 with itself or other hormones, suggesting different longitudinal phenotypes.
- DHEA-S is highly correlated with itself across all time periods.
- Estrone is highly correlated with itself across all time periods.
- Testosterone is highly correlated with itself across all time periods.
- In general, DHEA-S, estrone and testosterone are highly correlated with each other across the time periods.
- No correlation between DHEA-S and E2
- General lack of correlation between E2 and testosterone
- Correlation between E2 and estrone at corresponding time periods (eg. -18 with -18)

Correlations

Differences in Hormone Values Between Time Periods

	Standarized diffe Positivley Correla	ated - R>0.25	e hormones			f Diff	erer	nce in	Horme	ones	Betv	ween	Time	Perio	ods		
	Negatively Correl	ated - R>0.2	5					Prob >	Correlation Coef r under H0: Rh per of Observatio	o=0							
			Est	radiol			Es	trone		Testosterone			DHEA-S				
		-18 to -12	-12 to -6	-6 to time 0	time 0 to +6	-18 to -12	-12 to -6	-6 to time 0	time 0 to +6	-18 to -12	-12 to -6	-6 to time 0	time 0 to +6	-18 to -12	-12 to -6	-6 to time 0	time 0 to +
Estradiol	-18 to -12	1.00000 93	-0.85571 <.0001 77	-0.15953 0.2788 48	0.79127 <.0001 44	0.67510 <.0001 93	0.12728 0.2700 77	-0.05240 0.7236 48	0.2008	0.40230 0.0004 73	-0.09589 0.4367 68	-0.15445 0.2946 48	0.09652 0.5187 47	-0.01137 0.9148 91	0.8462	0.3052	0.1768 0.214 5
	-12 to -6	-0.85571 <.0001 77	1.00000 123	-0.44727 <.0001 81	-0.00063 0.9962 60	-0.13761 0.2327 77	0.07271 0.4242 123	-0.03429 0.7612 81	0.2279 60	-0.07444 0.5686 61	0.5195 105	0.11636 0.3136 77	-0.13909 0.2616 67	0.06933 0.5491 77	0.3364 119	0.8960 86	-0.1215 0.312 7
	-6 to time 0	-0.15953 0.2788 48	-0.44727 <.0001 81	1.00000	-0.15913 0.1433 86	-0.12706 0.3895 48	-0.09540 0.3969 81	0.37729 <.0001 125	0.2303 85	-0.10119 0.5344 40	0.9858 69	0.10956 0.2636 106	-0.08239 0.4454 88	0.12502 0.3972 48	0.7904 79	0.3647 117	-0.0697 0.511 9
	time 0 to +6	0.79127 <.0001 44	-0.00063 0.9962 60	-0.15913 0.1433 86	1.00000 125	0.41882 0.0047 44	-0.02828 0.8302 60		<.0001 124	0.16688 0.3099 39	0.07623 0.5661 59	-0.22372 0.0447 81	0.21155 0.0232 115	0.11933 0.4192 48	0.3924 65	89	0.0247 0.788 12
Estrone	-18 to -12	0.67510 <.0001 93	-0.13761 0.2327 77	-0.12706 0.3895 48	0.41882 0.0047 44	1.00000 93	-0.39604 0.0004 77	-0.09543 0.5188 48	0.8371 44	0.60969 <.0001 73	-0.18868 0.1233 68	0.04182 0.7778 48	-0.04919 0.7427 47	0.19229 0.0678 91	0.4714 77	0.3776 55	0.0548 0.702 5
	-12 to -6	0.12728 0.2700 77	0.4242 123	-0.09540 0.3969 81	-0.02828 0.8302 60	77	1.00000	-0.29978 0.0065 81	0.05116 0.6979 60	-0.25166 0.0504 61	0.12652 0.1984 105	-0.16669 0.1474 77	-0.07813 0.5297 67	0.04372 0.7058 77	0.0764 119	0.9102 86	0.2054 0.085 7
	-6 to time 0	-0.05240 0.7236 48 0.19664	-0.03429 0.7612 81 -0.15800	0.37729 <.0001 125 -0.13150	-0.21876 0.0430 86 0.54027	-0.09543 0.5188 48 -0.03191	-0.29978 0.0065 81 0.05116	1.00000 127 -0.55340	<.0001	-0.18284 0.2588 40 0.39963	0.03193 0.7945 69 0.10420	0.46689 <.0001 107 -0.36709	-0.25402 0.0163 89 0.67557	0.05248 0.7232 48 -0.01166	0.5737 79	0.0724 119	-0.0461 0.662 9 0.1820
	time 0 to +6	0.19004 0.2008 44 0.40230	-0.13800 0.2279 60 -0.07444	0.2303 85	<.0001 124	0.63131 0.8371 44 0.60969	0.6979 60	-0.33340 <.0001 86 -0.18284	125	0.033503 0.0117 39 1.00000	0.4322 0.4322 59	-0.30703 0.0007 81 -0.13167	<.0001 115	0.9373 48 0.50312	0.7854 65	0.4440 89	0.045 12
Testosterone	-18 to -12	0.40230 0.0004 73 -0.09589	0.5686 61	-0.10119 0.5344 40	0.16688 0.3099 39	 0.60969 <.0001 73 -0.18868 	-0.25166 0.0504 61 0.12652	-0.18284 0.2588 40 0.03193	0.0117 39	-0.39924	-0.39924 0.0016 60	0.4307 38	0.19521 0.2213 41	<.0001 87	0.8306 66	44	0.0344 0.824 4
	-12 to -6	-0.09589 0.4367 68 -0.15445	0.06355 0.5195 105 0.11636	-0.00218 0.9858 69 0.10956	0.07623 0.5661 59 -0.22372	-0.18868 0.1233 68 0.04182	0.12652 0.1984 105 -0.16669	0.03193 0.7945 69 0.46689	0.4322 59	-0.39924 0.0016 60 -0.13167	1.00000	0.06676 0.5589 79 1.00000	-0.21403 0.0895 64 -0.42012	0.00770 0.9481 74 0.09220	0.5323 115	0.4575	-0.1706 0.164 6 -0.0337
	-6 to time 0	-0.13445 0.2946 48 0.09652	0.3136 77	0.10936 0.2636 106 -0.08239	0.22372 0.0447 81 0.21155	0.04182 0.7778 48 -0.04919	-0.16669 0.1474 77 -0.07813		0.0007	-0.13167 0.4307 38 0.19521	0.06676 0.5589 79 -0.21403	-0.42012	 -0.42012 <.0001 95 1.00000 	0.09220 0.5331 48 -0.12287	0.5590 82	0.0003 122	-0.0337 0.748 9
	time 0 to +6	0.03032 0.5187 47 -0.01137	0.2616 67 0.06933	0.4454 88 0.12502	0.0232 115 0.11933	0.7427 47	0.5297 67 0.04372	0.0163 89	<.0001 115	0.2213 41 0.50312		<.0001 95 0.09220	-0.12287	0.3904	0.3631 72	0.4447	0.000
DHEA-S	-18 to -12	-0.01137 0.9148 91 -0.02248	0.06933 0.5491 77 0.08888	0.12502 0.3972 48 0.03038	0.11933 0.4192 48 0.10787	0.19229 0.0678 91 -0.08330	0.04372 0.7058 77 0.16310	0.7232 48	0.9373 48	0.50312 <.0001 87 0.02684	0.00770 0.9481 74 0.05882	0.09220 0.5331 48 0.06547	-0.12287 0.3904 51 -0.10876	110	<.0001	0.26656 0.0450 57 -0.14567	0.0217 0.874 5 -0.0897
	-12 to -6	-0.02248 0.8462 77 -0.14081	0.08888 0.3364 119 0.01430	0.03038 0.7904 79 0.08456	0.10787 0.3924 65 -0.04730	-0.08330 0.4714 77 -0.12131	0.16310 0.0764 119 -0.01235	0.5737 79	0.7854 65	0.02684 0.8306 66 -0.07218	0.5323 115	0.06547 0.5590 82 0.32140	-0.10876 0.3631 72 -0.07689	<.0001 88	135	0.1659	-0.0897 0.440 7 -0.4127
	-6 to time 0	-0.14081 0.3052 55 0.17689	0.8960 86	0.08456 0.3647 117 -0.06970	-0.04730 0.6598 89 0.02472	-0.12131 0.3776 55 0.05485	-0.01235 0.9102 86 0.20546		0.4440 89	-0.07218 0.6415 44 0.03442	0.4575 80	0.32140 0.0003 122 -0.03375	-0.07689 0.4447 101 0.28284		0.1659 92	140	-0.4127 <.000 10 1.0000
	time 0 to +6	0.17689 0.2143 51		-0.06970 0.5115 91	0.7887	0.7022	0.20546 0.0856 71	0.6624	0.0456	0.03442 0.8245 44	0.1642	-0.03375 0.7481 93	0.28284 0.0009 135	0.8747	0.4406	<.0001	1.0000

- In general, there is a lack of either positive or negative correlations, implying girls with big changes in a hormone between time periods did not experience a big change in another hormone, suggesting different longitudinal phenotypes.
- For all hormones the change between -18 to -12 is highly inversely correlated with next time period change of -12 to -6.
- For each time period estrone is negatively correlated with the change in the next time period.
- No correlation between DHEA-s and estrone or E2, suggesting different longitudinal phenotypes.

Variable Dimension Reduction Principal Component Analysis (PCA) - Proc Factor

- Variable reduction method
- Shared variance between several variables is explained in fewer unobserved variables (factors)
- Look for the number of factors that explain approximately 70% or more of the variance
- Variables are loaded on the factors by eigenvalues (>0.35). A high absolute value of an eigenvalue indicates a higher correlations with the factor.

Variable Dimension Reduction PCA

- PCA does not handle missing data
- Looked at only time periods -6,0 and 6 due to the large amount of missing data at time periods -18 and -12
- 9 girls were lost as all of their hormone measurements were outside of times -6, 0 and +6.
- Need to use Proc MI to handle the missing data as some girls might no have had blood drawn at every visit or the assays were too low to quantify.
- Ran Proc Mi for 30 imputations to ensure quality of the estimated values
- Factor analysis for each of the 30 imputed dataset
- Averaged the factor loadings (eigenvalues) across the 30 factor analysis results

Variable Dimension Reduction PCA

Sensitivity Analysis - Factor Analysis on a smaller more complete data set to compare the results

- N=260 all the girl included in the hormone analysis with at least some data at -6,0 and 6 (30 imputed data sets then averaged the 30 factor analysis results)
- N=67 all the girls with values for all four hormones at three time periods (-6, thelarche,+6 therefore no missing data)

Variable Dimension Reduction

PCA -Hormone Values at time=-6,0,6 – Only 3 of 12 factors shown

Factor loading from principal component analysis of hormones (n=260)

Factor loadings greater that 35 are flagged by an '*'.

Average of loadings from 30 PCAs of 30 Imputations

	Factor 1	Factor 2	Factor 3		
Testosterone -6	70*	34	6		
Testosterone 0	73*	26	31		
Testosterone +6	55*	63*	7		
DHEA-S -6	87*	9	4		
DHEA-S 0	88*	2	3		
DHEA-S +6	87*	16	8		
Estrone -6	61*	46*	36		
Estrone 0	60*	35	60*		
Estrone +6	33	80*	20		
Estradiol -6	0	40*	67*		
Estradiol 0	11	32	85*		
Estradiol +6	5	82*	26		
*Hormones log transformed Variance Explained by Factor	0.501302	0.1541	0.086107		
Cumulative Variance	0.501302	0.655402	0.741509		

Factor loading from principal component analysis of hormones (n=67)

Sensitivity Analysis

Factor loadings greater that 35 are flagged by an '*'.

n=67 (Girls who have all hormone values at times =-6,0,6

	Factor 1	Factor 2	Factor 3	
Testosterone -6	81*	5	8	
Testosterone 0	80*	14	10	
Testosterone +6	78*	-4	35*	
DHEA-S -6	86*	8	4	
DHEA-S 0	87*	12	7	
DHEA-S +6	91*	4	14	
Estrone -6	79*	35	12	
Estrone 0	59*	54*	26	
Estrone +6	60*	22	63*	
Estradiol -6				
	20	81*	-4	
Estradiol 0	-9	82*	26	
Estradiol +6	8	15	94*	
*Hormones log transformed				
All factors had eigenvalues >1				
Variance Explained by Factor	0.5314	0.1413	0.0944	
Cumulative Variance	0.5314	0.6727	0.7671	

PCA to Cluster (CA)

- PCA did not result in variable reduction of the absolute hormone values.
 - Should use all four absolute hormones measurements at -6,0 and 6 as objective predictive variables in the cluster analysis as all the variables loaded onto the first three components that explained >74% of the variance.
- Use the subset of girls (n=260) with hormone data between -6 and 6 as the imputed data resulted in factors very similar to the reduced data set in the sensitivity analysis.
 - Factor 1 same except estrone at 6
 - Factor 3 of N=260 the same as factor 2 of n=67
- Three factors imply 3 possible clusters

Participant Clustering Proc Fastclus – Hormone Values at time =-6,0,6

- Assigns participants to a cluster where the other participants are more similar to them than participants in another cluster.
- Each participant belongs to only one cluster.
- Very sensitive to outliers and has a method to identify outliers in their own clusters (unlike other cluster procedures)

Participant Clustering CA - Hormone Values at time =-6,0,6

3 distinct clusters were produced

All Girls included in Cluster Analysis - FASTCLUS Canonical variable 1 0 **Cluster 1 (n=42)** discriminates between cluster 10 3 and cluster 2 Canonical variable 2 discriminates between cluster 1 and cluster 2 and 3 5 Cluster 2 (n=37) 0 0 0 **Cluster 3 (n=172)** 0 0 00 0 00 0 5 10 0 Clusters -1 (n=2) and -2 (n=7) 0103020-20-1 Cluster

N=260 (results for n=67 produced similar cluster plot)

represent outliers that do not fit into any cluster

Mean hormone values for each cluster

Hormone phenotype objective predictors

Sex hormone serum concentrations of girls according to the three phenotypes identified using principal component anlaysis-based cluster anlaysis

DHEA-S (ug/dL), estrone and estradiol (pg/mL), testosterone (ng/dL)

		Cluster 1	Cluster 2	Cluster 3	
	Cohort	High DHEA, T and E1	High E2, T and E1	No High Hormone Values	- Significance (P value)*
	N=269	N=42	n=37	n=172	
Testosterone -6 [‡]	4.48	6.89	7.00	3.33	<0.001
Testosterone 0 [‡]	4.96	8.23	5.40	3.88	<0.001
Testosterone 6 [‡]	6.16	9.23	10.79	4.48	<0.001
Estrone -6 ⁺	4.00	6.18	5.24	3.06	<0.001
Estrone 0 [‡]	4.47	6.81	5.17	3.68	<0.001
Estrone +6 [‡]	6.09	8.10	11.78	4.39	<0.001
DHEA -6 [‡]	28.23	62.97	32.93	17.33	<0.001
DHEA 0 [‡]	30.79	68.13	24.91	21.78	<0.001
DHEA +6 [‡]	38.32	79.00	39.64	27.63	<0.001
Estradiol -6	2.83	2.46	4.60	2.12	<0.001
Estradiol 0 [‡]	3.37	3.68	(4.46)	2.79	<0.001
Estradiol +6 [‡]	5.38	5.40	17.25	3.26	<0.001

* Baseline values for the cohort given as mean unless noted. P values represent tests for groupwise differences between the phenotypes; Comparison between phenotypes using Kruskal-Wallis for continuous variables and χ^{2} for categorical.

Considerably higher values than cohort and other phenotypes

Cluster 1

- Higher DHEA (over 100% higher than the cohort mean at each time period)
 - T and E1 values (over 50% higher than the cohort mean)

Cluster 2

- High E2 values across each time period from 30% to 200% higher than the mean of the cohort
- E1 90% higher at +6
 - T >50% higher at -6 and +6 vs the cohort mean)

Cluster 3

 lower hormone values (approximately >20% lower) across the time period vs the mean of the entire cohort.

3 clusters or not....

- Two clusters are very well defined by hormone values.
- One cluster (cluster 3) is a large group that is appears tightly clustered but not well defined except the hormone values are lower than the other clusters and the cohort as a whole. Could it possibly be broken into 2 or more clusters?

PCA on Cluster 3 (n=172) vs the cohort

PCA on the cluster still shows all variables loading and suggests using all 12 as predictive variables in CA

- Factor loading from principal component anlaysis restricted to girls in cluster 3 (n=172)
- Factor loadings greater that 35 are flagged by an '*'.
- Average of loadings from 30 PCAs of 30 Imputations

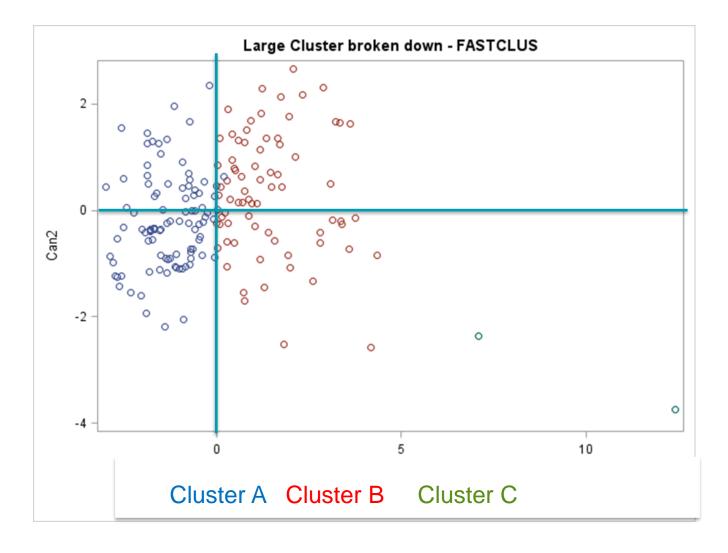
	Factor 1	Facto	r 2	Facto	Factor 3		
Testosterone -6	59 *	28		5			
Testosterone 0	63 *	37	*	22			
Testosterone +6	48 *	64	*	-3			
DHEA-S -6	81 *	-1		5			
DHEA-S 0	83 *	7		5			
DHEA-S +6	78 *	27		5			
Estrone -6	44 *	40	*	43	*		
Estrone 0	47 *	32		57	*		
Estrone +6	21	80	*	21			
Estradiol -6	-9	4		65	*		
Estradiol 0	5	19		70	*		
Estradiol +6	-9	72	*	28			

*Hormones log transformed

All factors had eigenvalues >1

Factor loading from principal component anlaysis of hormones (n=260)

Factor loadings greater that 35 are flagged by an '*'.


Average of loadings from 30 PCAs of 30 Imputations

	Factor '	1	Factor	2	Factor 3		
Testosterone -6	70	*	34		6		
Testoserone 0	73	*	26		31		
Testosterone +6	55	*	63	*	7		
DHEA-S -6	87	*	9		4		
DHEA-S 0	88	*	2		3		
DHEA-S +6	87	*	16		8		
Estrone -6	61	*	46	*	36		
Estrone 0	60	*	35		60	*	
Estrone +6	33		80	*	20		
Estradiol -6	0		40	*	67	*	
Estradiol 0	11		32		85	*	
Estradiol +6	5		82	*	26		

*Hormones log transformed

All factors had

CA on Cluster 3 (n=172)

Cluster A n=74 Cluster B n=96 Cluster C n=2

Clusters A and B seem to be a large cluster cut in half.

Canonical Variable 1 discriminates between Cluster A and B

Cluster C is just too small and are the outliers.

Canonical Variable 2 does not discriminate between clusters

Clustering to Phenotype

- Phenotype 1 = Cluster 1, n=42 (from CA n=260)
- Phenotype 2 = Cluster 2, n=37 (from CA n=260)
- Phenotype 3a = Cluster 3A, n=74 (from CA on n=172)
- Phenotype 3b = Cluster 3B, n=96 (from CA on n=172)

• Outliers are not included in any clusters or phenotypes.

Further Characteristics of the Phenotypes after being the Cincinnation of the Phenotypes after being the second se

- Statistical difference exists between the age of thelarche and the age of pubarche among the four phenotypes.
- Girls in phenotypes 1 and 3b had an average age of menarche statistically later than girls in phenotype 2.
- The tempo of girls in phenotype 2 was statistically shorter than that for girls in phenotype 3b.
- Girls in phenotype 3b were more likely to enter puberty via pubarche rather than thelarche which is different than the other phenotypes.
- No differences between the phenotypes existed for the following characteristics:
 - BMI
 - ethnicity
 - family history of 1st or 2nd degree breast cancer
 - mother's age of menarche
 - caregiver's education

Conclusions

- Classifying hormone heterogeneity prior to puberty is highly informative in unveiling different pathways through puberty.
- These analyses are the first to apply PCA-CA methods to longitudinal sex hormone data of girls going through puberty.
- PCA-CA did not result in variable reduction of the absolute hormone values but did identify four meaningful phenotypes of hormones levels in young girls in relationship to the timing of thelarche.
- The four distinct hormone phenotypes in girls indicate hormones levels relative to the age of the the are not the same in all girls and help to explain disparity in the age of onset.
- These findings underscore the need to better understand female sex hormones prior to puberty based on time related to puberty rather than chronological age or pubertal status.

Aim 3

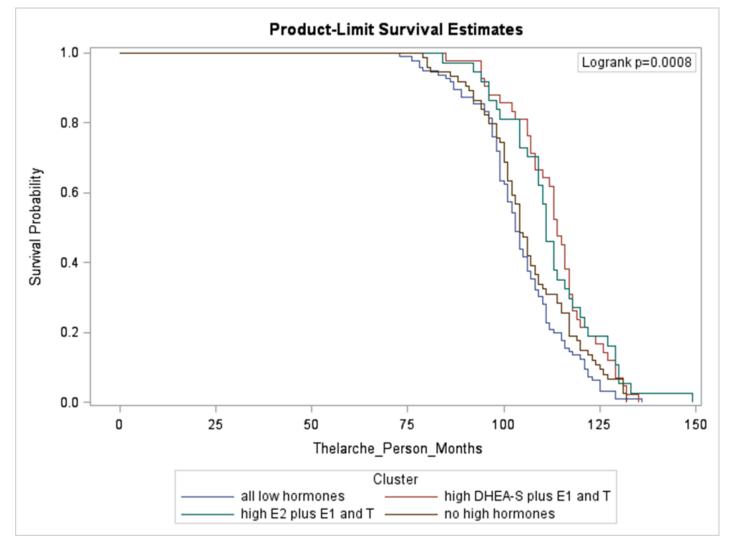
Aim 3

Use multivariable survival analysis to determine which among the sex hormone profile phenotypes (consisting of DHEA-S, estradiol, estrone and testosterone) are predictive of age of thelarche, pubarche, and menarche to allow researchers to further understand why some girls experience pubertal milestones at an earlier age than others.

Survival Analysis

Cox proportional-hazard models (probability or likelihood of the event of interest) were conducted in SAS using PHReg and controlling for covariates.

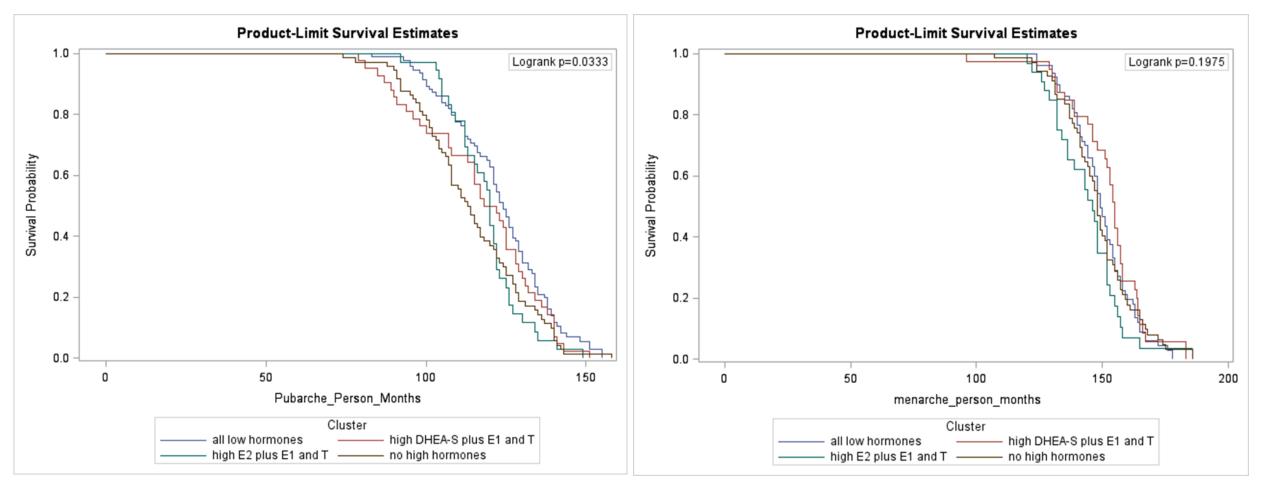
- do not require a certain probability function
- may include multiple covariates
- may include continuous and/or categorical covariates
- allows for the inclusion of girls who are right censored
- allows for interactions between covariates


Assumption of proportional hazards – additive changes in a variable cause corresponding multiplicative changes in the hazard function e.g. ratio of hazards for two individuals over time is constant

Girls who have not yet reached the pubertal milestone during the study or were lost to follow up prior to achieving it will be right censored.

Survival Analysis (unadjusted)

Thelarche



Survival Analysis (unadjusted)

Pubarche

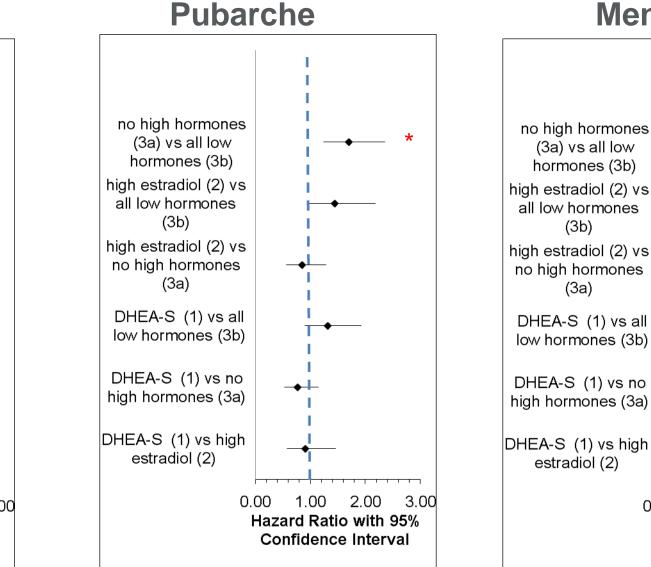
Menarche

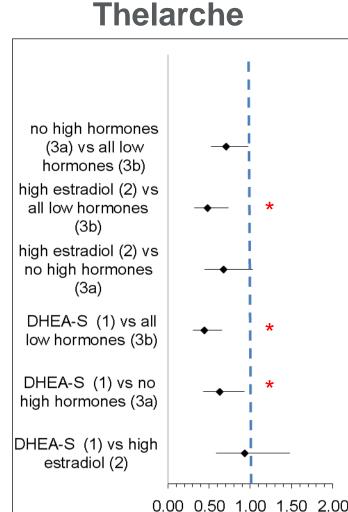
Risk Estimates by Phenotypes

*

3.00

1.00


Hazard Ratio with 95%


Confidence Interval

0.00

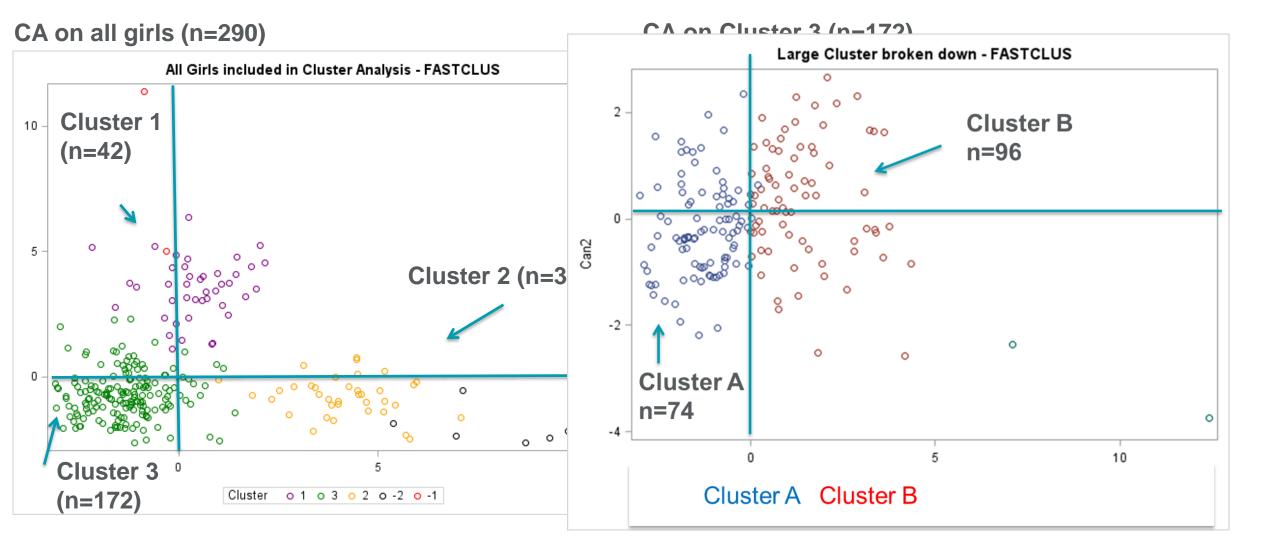
2.00

Menarche

Hazard Ratio with 95%

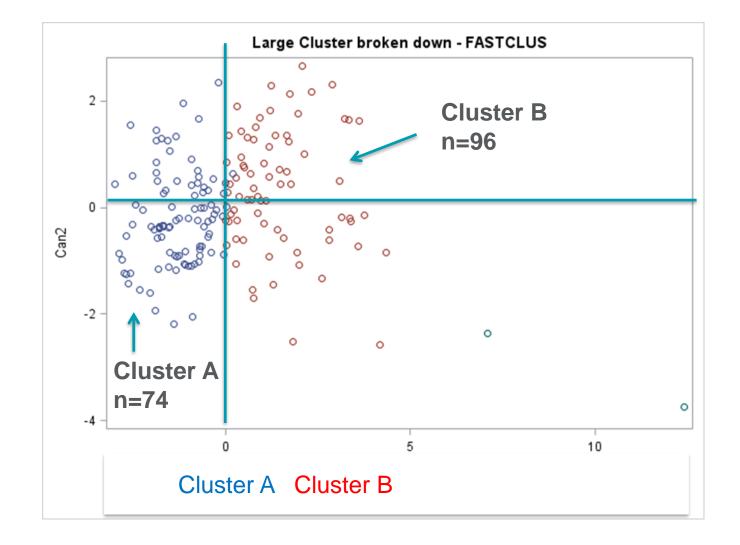
Confidence Interval

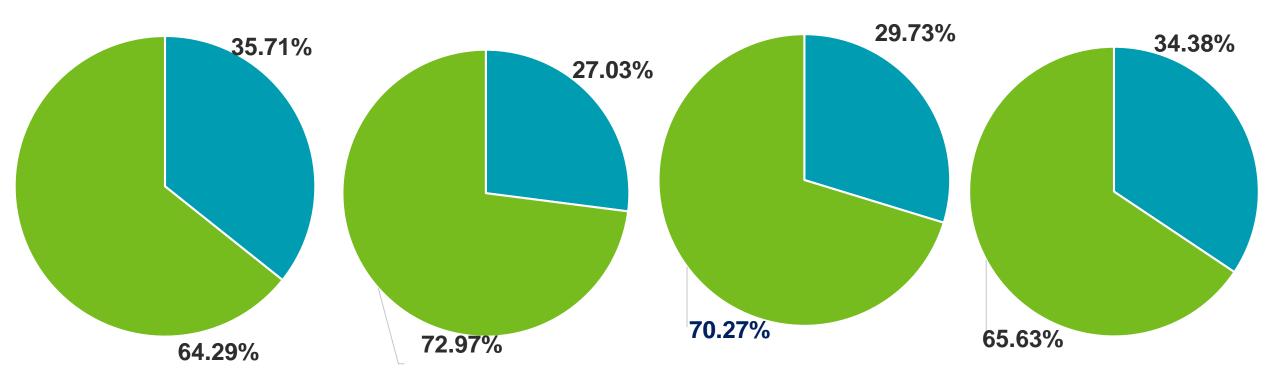
Clark O; Djulbegovic B. Forest plots in excel software(Data sheet). 2001. Available at www.evidencias.com.

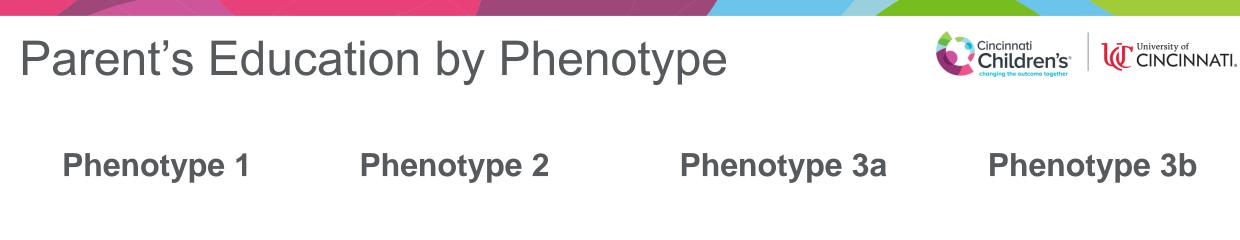

- Risk of earlier age of thelarche, pubarche and menarche differed by phenotypes, confirming heterogeneity of hormone phenotypes.
- Girls with mother's ages of menarche younger than 12 years old had a 50% increased risk of reaching all three milestones earlier than girls with mother's ages at least 14. This possibly indicates a genetic influence.

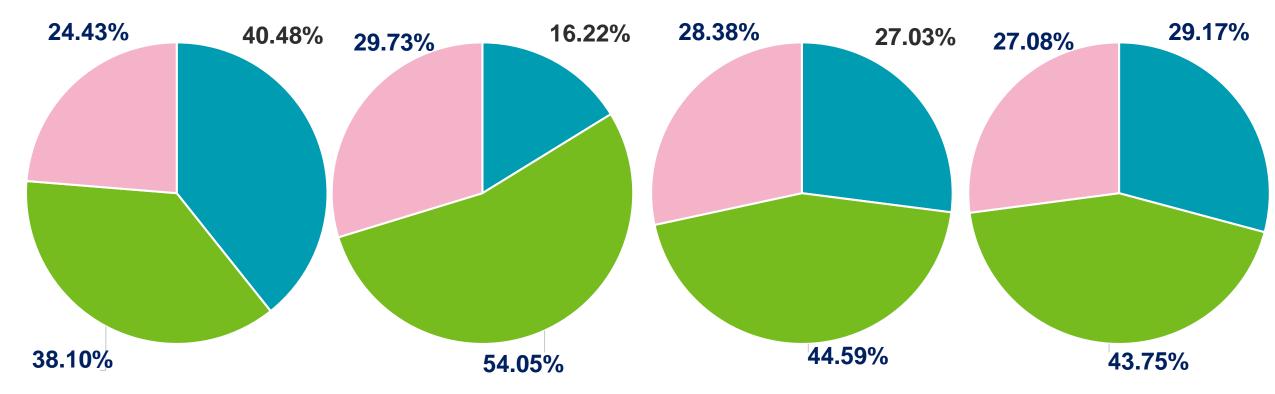
Summary

Participant Clustering CA - Hormone Values at time =-6,0,6




CA on Cluster 3 (n=172)




Race and parent's education by Phenotype Sae Children's Phenotype 3b

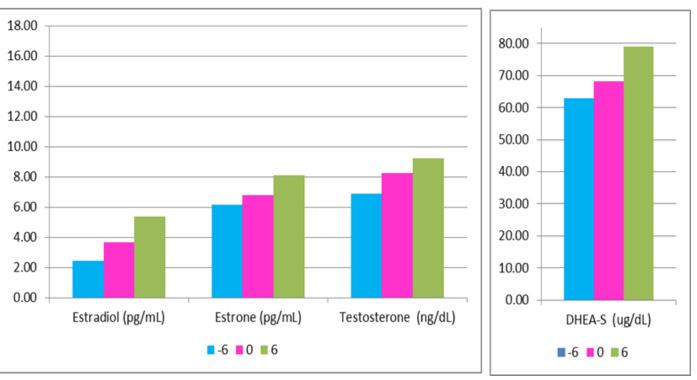
Black White and all other

No statistically significant difference in race by phenotype.

High school degree or less

No statistically significant difference in education by phenotype.

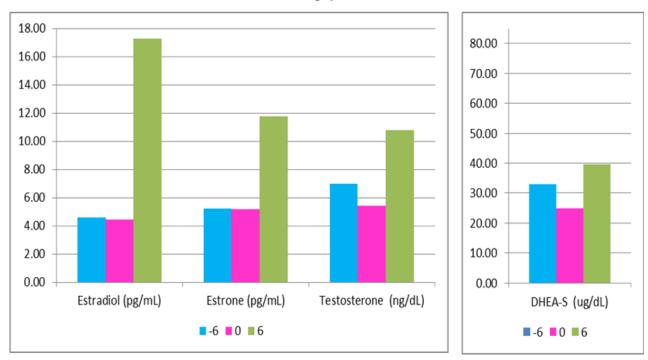
Phenotype 1



- Oldest age at thelarche
- Oldest age at menarche

Hip Pocket??

• Less likely to enter thelarche early compared to 3a or 3b

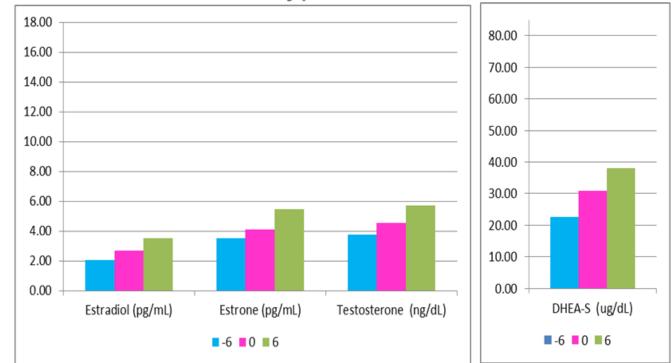

Phenotype 1

Phenotype 2

- Shortest tempo
- Youngest age at menarche
- 50% greater risk of earlier menarche than other phenotypes
- More likely to enter the larche later than 3b

Hip Pocket??

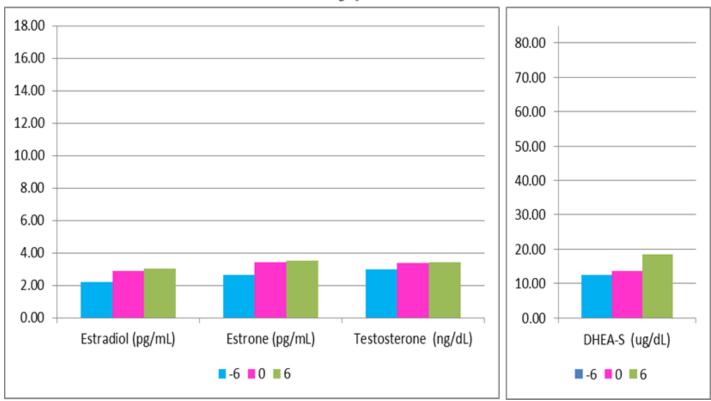
Phenotype 2



Phenotype 3a

• Youngest age at pubarche

Hip Pocket??



Phenotype 3a

Phenotype 3b

- Youngest age at thelarche
- Second to oldest age at menarche
- Longest tempo
- Oldest age attipubarche

Phenotype 3b

