Overview of Gene-Environment Interactions in Breast Cancer

Mia M. Gaudet, Ph.D. Scientific Director, Epidemiology Research

Genetic variation plays an important role in breast cancer etiology Classic BRCA1 Pedigree

Familial aggregation of cancer observations

Comparison of monozygotic & dizygotic twins

31% of breast cancer variability in the population due to interindividual 20% lifetime probability of breast cancer if dizygotic twin diagnosed

Family history as a risk factor for most cancers

Any first-degree family members with breast cancer: RR=2

Relative risk increases with number of family members, number with early onset disease

Yet, only 5-10% of cases have a family history

Rare, high penetrant mutations thru more common, less penetrant variants associated with breast cancer risk

Minor Allele Frequency (MAF)

Adapted from Manolio, Nature, 2009; Michaildou, Nature 2017; Robson, NEJM 2007; Garber 2005; Updated based on Easton, 1995; Ford, 1998; Hopper, 1999; Antoniou, 2003, 2005b, 2008a,b; Chen, 2006; Begg, 2008; Milne, 2008; Brohet, 2014; Gabai-Kapara, 2014; ; Couch, JAMA Oncology, 2017; Mavaddat, Am J Hum Genet, 2019

Variation of breast cancer incidence over time, country, and migrants demonstrate role of environment

"Siegel R. Ca Cancer J Clin, 2018; Doll and Peto, JNCI, 1981

Common risk factors for sporadic breast cancer

		Risk Factor	Magnitude of Risk
Factors		High breast tissue density	<u> </u>
		Early menarche (<12 years)	\uparrow
		Late menopause (>55 years)	\uparrow
	Ì	No full-term pregnancies	\uparrow
		Tall height (5'9" or taller)	\uparrow
		Never breastfed a child	\uparrow
Factors		Obesity (postmenopausal women)	\uparrow
		Current or long-term use of postmenopausal hormones	\uparrow
		Alcohol consumption	\uparrow
		Cigarette smoking	\uparrow
		Physical inactivity	\uparrow

Biological nta Environmer -ifestyle Modifiabl

American Cancer

Breast cancer differs by ER status

Feature	ER+	ER-
Proportion of cases	2/3	1/3
Diagnosed stage	Early	Late
Age distribution	Older	Younger
Higher relative risk by race	Caucasian	African-American
Treatment Responsiveness	Selective estrogen receptor modulator	Chemotherapy
5-year prognosis	Good	Poor
Risk factors	Nulliparity, delayed childbirth, postmenopausal obesity	Parity, low veggie intake

Role of gene-environment (G*E) interactions in breast cancer is unclear

G*E results provide insight into biological mechanisms underlying breast cancer, allow distinction of women at high risk from women at lower risk, and improve the accuracy of risk prediction models.

G*E analyses have high sample size requirements, assuming α =0.05

Pooling trade-off: quantity vs. specificity and quality

Case-control studies vs. cohort studies

Concerns about recall bias, timing of exposure relative to disease

Exposures harmonized to lowest common denominator

e.g., HRT ever/ never use vs. timing and duration

Harmonization across different types of questions

e.g., definition of unexposed

Functional variants*E reveal few interactions, but may inform experimental studies

Study population: 26,968 cases and 31,605 controls from 21 studies in the Breast Cancer Association Consortium (BCAC)

Genetics: 55 potentially causal variants as well as 15 newly identified SNP alleles

Environment: age at menarche, oral contraceptive (OC) use, parity, age at first full-term pregnancy (FTP), number of FTPs, breastfeeding, use of menopausal hormone therapy (MHT), body mass index (BMI), adult height, smoking and alcohol consumption

Breast cancer: overall and by ER status

Breast cancer subtype	SNP/risk factor	OR _{int} (95% CI)	ABF
Overall	CFLAR-rs7558475/ current smoking	0.77 (0.67-0.88)	0.007
ER-	5q14-rs7707921/ alcohol	1.36 (1.16-1.59)	0.005
ER-	3p21-rs6796502/ age at menarche	1.26 (1.12-1.43)	0.010
ER-	8q23-rs13267382/ age at first birth	0.89 (0.83-0.95)	0.016

PRS*E reveal minimal departures from multiplicative model

Study population: 3,453 – 23,104 cases and similar controls, depending on E, from 20 studies in BCAC

Genetics: 77-SNP PRS

Environment: reproductive history, alcohol consumption, menopausal hormone therapy (MHT), height and body mass index (BMI)

Breast cancer: overall and by ER status

Odds ratios and 95% confidence intervals for breast cancer risk factors by percentiles of PRS specific for ER-positive breast cancer

Adult height (per 5 kg/m ²) – $OR_{int} = 0$	0.96, 95% CI 0.92 – 0.99)
0-<10%	± 1.06 [0.94; 1.19]
10-<20%	1.06 [0.94: 1.19]
20-<40%	1 15 [1 06: 1 24]
40-<60%	1 16 [1.00; 1.24]
F0-<80%	1.10 [1.07, 1.24]
00-<00%	1.00 [0.90, 1.13]
80-<90%	1.06 [0.95; 1.17]
90-100%	÷ 0.99 [0.89; 1.10]
Current use of combined MHT (yes v	v no) – OR _{int} = 1.34, 95% Cl 1.02 – 1.77)
0-<10%	1.06 [0.58: 1.91]
10-<20%	2 43 [1 33: 4 42]
20-<40%	0.99 [0.66: 1.48]
40-<60%	
60.<80%	
80 < 00%	
00-100%	2.02 [1.15, 5.05]
90-100%	2.80 [1.55; 5.05]
Alcohol intake (per 10 g per day) – (OR _{int} = 0.89, 95% Cl 0.82 – 0.97)
0-<10%	- 1.21 [1.05; 1.39]
10-<20%	1.06 [0.92; 1.22]
20-<40%	1.05 (0.98: 1.13)
40-<60%	1.12 [1.01: 1.24]
60-<80%	± 0.99 [0.89: 1.11]
80-<90%	1 05 [0.91: 1.20]
90-100%	1 05 [0.01; 1.20]
vv-1vv/v	1.00 [0.02, 1.20]
0.2	0.5 1 2 5

Rudolph A, Int J Epidemiol, 2018

SNP*E in largest, most comprehensive study to date, yet still no evidence for departures

Study population: 72,285 cases and 80,354 controls from 46 studies in BCAC

Genetics: 205 SNPs

American Cancer

Environment: age at menarche, ever parous, number of full-term pregnancies, age at first full-term pregnancy; ever breastfed, duration of breastfeeding, ever use of oral contraceptives, adult body mass index, adult height, lifetime alcohol consumption, current smoking, and current use of combined estrogen-progesterone menopausal hormonal therapy and current use of estrogen-only therapy for postmenopausal women

Breast cancer: overall and by ER status

Improved discrimination with inclusion of environmental factors AND common genetic variants

Analysis of ~17,000 breast cancer cases and ~20,000 controls from 8 cohorts

Absolute lifetime risk associated with environmental factors stratified by deciles of genetic risk

28.9% of all breast cancer cases could be prevented if all women had lowest decile of BMI, did not use menopausal hormones, did not drink alcohol, and did not smoke cigarettes

Future work needs to stratify by ER status

Comparing absolute risk based on modifiable factors (BMI, MHT use, alcohol use, and cigarette smoking) by decile of nonmodifiable risk

Influences on sample size requirements to identify G*E interactions

Incomplete identification of all causal genetic variants associated with breast cancer

Error in exposure measurement and less investment in advancements

Insufficient variation in exposures

Differences in environmental and genetic associations by ER status and beyond

