Windows of Susceptibility

- Rapidly dividing cells are more vulnerable to the effects of environmental* exposures than non-dividing cells. These periods of rapid cellular growth are known as “windows of susceptibility.”

 - These “windows of susceptibility” – include perinatal, postnatal, pubertal, pregnancy, lactational, and menopausal stages of life.¹ ³

 - Alterations in breast development are most likely to occur when the timing of certain environmental exposures overlaps with periods of rapid cellular growth.¹

- Researchers are focusing increasingly on the impact of early life exposures to environmental factors during the prepubertal and pubertal windows of susceptibility.

 - It is now becoming clearer that disease risk is the result of numerous exposures across the lifespan acting in concert with an individual’s own genetics.¹ ³

Early Pubertal Development and Breast Cancer Risk

- Estrogen exposure over a long time may increase the risk of breast cancer. As estrogen levels are highest during the years a woman is menstruating, an early first period increases the number of years breast tissue is exposed to estrogen.⁶

- After reviewing multiple pubertal timing studies conducted since the mid-1900s, an expert panel concluded that, overall, girls’ bodies begin to show signs of entering puberty earlier now than in the recent past.⁷

- Initial results from the ongoing Breast Cancer and the Environment Research Program (BCERP) also show a trend towards earlier breast development.

 - Results showed 23% of Black girls, 15% of Hispanic girls, 10% of White girls, and 2% of Asian girls in the study started developing breasts by age 7.⁸

- Girls who enter puberty early may have a greater risk of developing breast cancer later in life.⁹

 - A young girl who is suspected of entering puberty unusually early should be evaluated by her family physician or pediatrician, who may refer her to a pediatric endocrinologist or other specialist for further evaluation.¹⁰

* For the purposes of this fact sheet, “environmental factors” include the air we breathe, the food we eat, the water we drink, and things we touch and put on our skin.
Possible Environmental Causes of Early Puberty

- Studies of twins have confirmed that both genetics and environmental factors affect pubertal maturation.\(^{11-12}\)

- A girl who is obese\(^*\) is more likely to develop breasts and get her period at an early age.\(^{13-15}\)

- Studies conducted in laboratory animals suggest that high-fat diets can cause the subjects to mature earlier than animals fed a standard diet.\(^{16-17}\)
 - Experimental animal studies using rodents play a vital role in advancing the understanding of the molecular biology of mammary gland development and tumorigenesis.

- Exposure to endocrine disruptors could affect the timing of the onset of puberty.\(^{18-19}\)
 - Endocrine disruptors are chemicals that mimic estrogen and may interfere with the endocrine system, producing adverse effects in humans. The risk of this interference is thought to be greater during windows of susceptibility.
 - Endocrine disruptors produce harmful effects in laboratory animals, wildlife, and humans, and may interfere with the normal action of the body’s hormones.
 - Scientists are paying particular attention to endocrine-disrupting compounds called phthalates\(^{20}\) and bisphenol A (BPA).\(^{21}\)
 - Animal studies have suggested that maternal exposure to phthalates may be related to less regulation of cell division in the mammary glands of female offspring.\(^{22}\)
 - Animal studies have also shown that maternal exposure to BPA, while breastfeeding, can increase mammary cancer susceptibility of the female offspring.\(^{23}\)

- Ongoing research by the Breast Cancer and the Environment Research Program is exploring relationships such as:
 - How endocrine disrupting chemicals (EDCs) affect the age at which girls enter puberty and the age at which they have their first period;
 - Whether certain types of dietary fat, when combined with exposure to EDCs, affect breast cancer risk later in life;

\(^*\) For the purposes of this fact sheet, “obesity” is defined as a BMI at or above the 95th percentile for children of the same age and sex on the Centers for Disease Control and Prevention (CDC) growth charts found at: http://www.cdc.gov/obesity/childhood/basics.html.
How hormones affect normal mammary gland development;

How exposures to phthalate/phenol at different time points in the life cycle affect gene expression in normal mammary tissue.

Reducing Risk

- Both healthy eating and being active can help people maintain a healthy weight and body fat level, and may help to reduce the risk of developing breast cancer later in life.

- Pregnant and breastfeeding women may want to limit their exposure to phthalates and BPA when possible, since these substances may be passed in utero or through breast milk to their children. Parents and caregivers can take steps to reduce girls’ exposure to phthalates and BPA by:

 o Choosing to purchase personal care products such as nail polish, deodorant, hair care, body lotion, cosmetics, detergent, and soap that say “phthalate-free,” “fragrance-free,” or do not have the word phthalate anywhere in the ingredient list.

 o Avoiding the use of plastic food and drink containers and plastic or vinyl toys with the number 3 in the recycling triangle, as they contain phthalates.

 Reducing the use of plastic food and beverage containers with the number 7 in the recycling triangle, as they often contain BPA.

 o Choosing fresh or frozen fruits and vegetables over canned. The cans used for food are often lined with material that contains BPA.

To learn more about environmental exposures and breast cancer risk, download a monograph for health professionals and/or patient education materials at www.info.bcerp.org.

Early Puberty and Breast Cancer Risk

Fact Sheet for Health Professionals:

Made possible by the Breast Cancer and the Environment Research Program (BCERP) grants U01 ES012770, U01 ES012771, U01 ES012800, U01 ES012801, U01 ES019453, U01 ES019435, U01 ES019454, U01 ES019457, U01 ES019471, U01 ES019466, U01 ES019434, U01 ES019480, U01 ES019482, U01 ES019459, U01 ES019472, and U01 ES019458 from the National Institute of Environmental Health Sciences (NIEMS) and the National Cancer Institute (NCI), NIH, DHHS.

www.info.bcerp.org